
Interactive Power Flow

IPF Developers

Nov 07, 2022





CONTENTS

1 Features 3

2 Contents 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Compiling Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 IPF Interaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Network Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 The BASE (.bse) File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Original License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Original Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Setting Up a Network Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 New Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Reconductoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 Series Compsensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Record Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 System Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Continuation Bus Data (+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.5 Area Interchange Control (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.6 Area Output Sort (AO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.7 AC Bus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.8 AC Bus Data (B-blank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.9 AC Bus Data (BC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.10 AC Bus Data (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.11 AC Bus Data (BF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.12 AC Bus Data (BG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.13 AC Bus Data (BQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.14 AC Bus Data (BS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.15 AC Bus Data (BT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.16 AC Bus Data (BV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.17 AC Bus Data (BX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.18 Two-Terminal DC Bus (BD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.19 Multi-Terminal DC Bus (BM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



2.5.20 Delete Buses by Area (DA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.21 Delete Buses by Zone (DZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.22 Equivalent Transmission Line Branch (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.23 Scheduled Area Intertie (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.24 Balanced Transmission Line Branch (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.25 Two-Terminal DC Line (LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5.26 Multiterminal DC Line (LM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5.27 Factor Change (PO, PZ, PN, PA, PB, PC, PD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.28 Reactive Capability Curves (QP, QX, QN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.29 Regulating Transformer (R, RV, RQ, RP, RN, RM) . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5.30 Series Compensated RANI Model (RZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.5.31 Transformer Data (T, TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5.32 Switched Reactance (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.5.33 Zone Rename (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5.34 Area Rename (ZA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.5.35 Bus Rename (ZB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.6 Power Flow Control (PFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.6.2 The bpf Control Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.6.3 Special Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.6.4 Default Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.6.5 Microfiche Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.6.6 Level 1 PFC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.6.7 Level 2 and 3 PFC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.6.8 PFC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6.9 AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.6.10 AI_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.6.11 ANALYSIS_SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.6.12 BRANCH_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.6.13 BUS_SENSITIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.6.14 CHANGE_BUS_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.6.15 CHANGE_PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6.16 CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.6.17 COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.6.18 COMMON_MODE_ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.6.19 F_ANALYSIS_RPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.6.20 F_INPUT_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.21 F_OUTPUT_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.22 GEN_DROP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.23 HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.6.24 INCLUDE_CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.6.25 LINE_EFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.6.26 LINE_SENSITIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.6.27 %LOAD_DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.6.28 LOAD_GE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.6.29 LOAD_PTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.6.30 LOSS_SENSITIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.6.31 MERGE_OLD_BASE and MERGE_NEW_BASE . . . . . . . . . . . . . . . . . . . . . . 133
2.6.32 MVA_BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6.33 NETWORK_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6.34 NEW_BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6.35 OI_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6.36 OLD_BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.6.37 OUTAGE_SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ii



2.6.38 OVERLOAD_RPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.6.39 P_ANALYSIS_RPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.6.40 P_INPUT_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
2.6.41 P_OUTPUT_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.6.42 REBUILD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.6.43 REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.6.44 RPT_SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.6.45 SAVE_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.6.46 SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2.6.47 SORT_ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
2.6.48 TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
2.6.49 TRANSFER_SENSITIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
2.6.50 TX_EFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2.6.51 USER_ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2.6.52 PFC Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

2.7 Powerflow Command Language (PCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.7.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
2.7.3 File Opening and Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.7.4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
2.7.5 PUT_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2.7.6 Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

2.8 Command Line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.8.1 bpf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
2.8.2 ipf_reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
2.8.3 ipfplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.8.4 netdat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.8.5 ipfcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.8.6 pvcurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.8.7 post_pvcurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.8.8 qvcurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.8.9 findout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.8.10 lineflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.8.11 mimic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.8.12 ipfsrv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.8.13 ipfbat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.8.14 ipf_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
2.8.15 ipfnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
2.8.16 ips2ipf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

2.9 Transient Stability Program (tsp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2.9.1 Program Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

2.10 X Window Graphical Interface (gui) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.10.1 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2.10.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2.10.3 A Summary of Motif Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
2.10.4 IPF as an X Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.10.5 IPF X Window GUI Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2.10.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2.10.7 Working with the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2.10.8 Starting IPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2.10.9 Exiting IPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
2.10.10 Opening Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
2.10.11 Saving Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
2.10.12 Changing the Displayed Network Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

iii



2.10.13 Editing Base Case Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2.10.14 Solving a Network Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
2.10.15 Bus and Branch Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
2.10.16 Input Data Edit Dialog Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.10.17 AC Bus Input Data Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
2.10.18 BD Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
2.10.19 BM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
2.10.20 Continuation Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
2.10.21 Switched Reactance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
2.10.22 PQ Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
2.10.23 Sectionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
2.10.24 Line Tapping (may not be available) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.10.25 Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
2.10.26 Phase Shifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
2.10.27 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.10.28 Regulating Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2.10.29 Equivalent Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2.10.30 Menu Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
2.10.31 Customizing the GUI (XGUI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

2.11 CFLOW C API (libcflow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
2.11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
2.11.2 Creating a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
2.11.3 Running a CFLOW Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2.11.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
2.11.5 Functions Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2.11.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
2.11.7 Simple Report Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2.11.8 Standard Line Flow Summary Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.11.9 increm Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
2.11.10 libcflow API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

2.12 Network Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2.12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2.12.2 Input Requirements, Output, and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2.12.3 Coordinate File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
2.12.4 PostScript Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
2.12.5 Diagram Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

2.13 Calculating Line Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2.13.1 Description of Conductor Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2.13.2 Output Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
2.13.3 Calculating the Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

2.14 DC Line Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
2.15 Network Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

2.15.1 Method of Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
2.15.2 Description of Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
2.15.3 Program Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
2.15.4 REI Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2.15.5 REI Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.15.6 Coherency Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
2.15.7 Using REI Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.15.8 Optimal Network Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.15.9 REDUCTION Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

2.16 Retained Network Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.16.1 Reduction Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.16.2 Input listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

iv



2.17 Voltage Limits and Starting Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
2.17.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

2.18 Developer Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
2.18.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
2.18.2 bpf Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
2.18.3 tsp Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
2.18.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
2.18.5 Command Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
2.18.6 WSCC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
2.18.7 Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Index 473

v



vi



Interactive Power Flow

Interactive Power Flow (IPF) is a software package for doing power flow studies. IPF models the operation of a bulk
electric power network. It can be used to:

• Investigate bulk electric power networks

• Determine bus voltage distribution

• Study real and reactive power flows in lines

• Evaluate line overloads

• Plan area interchange control

• Determine transformer tap settings

• Determine remote-bus voltage controls

• Plan for system reactive power requirements

• Determine effect of load shedding, generator dropping, and line outages

• Run transient stability studies on generator rotor dynamics

Fig. 1: Interactive Power Flow X Window GUI

Electric power system network design encompasses the following tasks:

• Determination of load centers and generation patterns as well as sizes of loads and generation.

• Determination of available transmission corridors (rights-of-way) and assessment of the capacity of these corri-
dors to accommodate transmission lines.

CONTENTS 1



Interactive Power Flow

• Evaluation of existing or planned networks with regard to adequate power-carrying capability, voltage regulation,
reliability of service, and operating economics.

• Determination of size and routing of new transmission lines, and size and location of terminal equipment for
achieving efficient and economical reinforcements when needed.

• Evaluation of proposed reinforcements in light of power flow capability, ability to withstand transient distur-
bances, reliability of overall service, economics, impact on regional economy, environment, energy conservation
and operational constraints such as construction lead times, coordination of various facility ownership interests,
flexibility for future growth and compatibility with other long-range plans.

The dynamic nature of load growth, load distribution, and generation patterns make the problem of network design
one of planning. To plan for the future, power system planners and design engineers must look at the past and present.
This makes Interactive Power Flow a great tool for the network design engineer, but it can also be used by students for
academic studies. IPF models the complex network structure and can evaluate it at various points in time.

2 CONTENTS



CHAPTER

ONE

FEATURES

Interactive Power Flow has the following high level feature set:

• Set of Command Line Tools for running power flow studies using domain specific languages (See Powerflow
Command Language (PCL) and Power Flow Control (PFC) commands) for “batch” command line runs in which
users can run multiple powerflow scenarios, plot results (See ipfplot, and create reports (See ipf_reports)

• X Window Graphical Interface (gui) allowing easy-to-edit graphical display of the network diagram

• CFLOW C API (libcflow) functions for running studies

• Advanced capabilities like REI Network Reduction and Transient Stability Program (tsp)

3



Interactive Power Flow

4 Chapter 1. Features



CHAPTER

TWO

CONTENTS

2.1 Installation

IPF is installed by compiling from source. This is probably easiest using the Docker approach outlined below, but
compiling manually from source is also an option.

2.1.1 Docker

You can use docker to build and run this project. Just build the container:

$ git clone https://github.com/mbheinen/bpa-ipf-tsp
$ cd bpa-ipf-tsp
$ docker build -t bpa-ipf-tsp .

Then run it using interactive -i and tty -t option. The container will run bpf by default so once the container is started
you can just type the name of the file in the data directory that you’d like to run (e.g. bench.pfc):

$ docker run -it --rm bpa-ipf-tsp
BPA POWER FLOW PROGRAM VERSION:IPF 327
Enter Power Flow Control (PFC) file name > bench.pfc

Otherwise start an interactive tty with bash to run other processes.

$ docker run -it --rm bpa-ipf-tsp bash
[root@e9d28ac4f070 data]# bpf bench.pfc
[root@e9d28ac4f070 data]# tsp bench.fil

2.1.2 Compiling Manually

If Docker isn’t an option, compile manually. The majority of this codebase is written in Fortran with some C so both
Fortran and C compiler are needed in order to compile it. Also, note that to this point it has only been test compiled
on CentOS/RHEL 7 (gcc 4.8.5) and Ubuntu 20.04 (gcc 9.4.0). Pull Requests are welcome if you want to try a different
platform or run into issues on another platform and want to fix something!

Install the build tool (CMake), compilers, and dependencies (Motif X Window):

CentOS/RHEL

$ yum install cmake gcc gcc-gfortran motif motif-devel

Ubuntu

5

http://www.cmake.org
https://motif.ics.com/motif


Interactive Power Flow

$ apt-get install cmake gcc gfortran libmotif-dev libxmu-dev

Then you’re ready to compile. This project uses CMake. CMake is a multi-platform build tool that can generate build
files for many different target platforms. CMake recommends doing “out of source” builds, that is, the build files and
artifacts are separated from the source files. This is convenient when doing development because there is no need to
clean out compiled stuff (e.g. object files, libraries, executables, etc.) from the source tree. To do this, you create
a build/ directory at the top level of the project and everything gets built there. This allows you to just delete the
build/ directory when you’re done.

Doing a checkout and compile of this repository is done as follows:

$ git clone https://github.com/mbheinen/bpa-ipf-tsp
$ cd bpa-ipf-tsp
$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install

After running these commands, you will see the library binaries in a lib/ directory and the executables in a bin/
directory. The sudo make install command will also place the binaries in /usr/local/bin, which should be in
your path.

Debug

To build with debug symbols, do cmake -DCMAKE_BUILD_TYPE=Debug .. instead of cmake ...

Testing

You can run the test suite after compiling by running ctest -C <Build Type>`:

$ ctest -C Release

2.2 Overview

You can interact with IPF using the Command Line Tools (bpf, ipfbat, ipfcut, etc.), the X Window Graphical
Interface (gui) or the CFLOW C API (libcflow). Many of the functions and features of the command line tools are
available through specially designed GUI features. The GUI simplifies creating network data, running the base case
solutions, and graphically visualizing the network diagrams.

2.2.1 IPF Interaction Model

The conceptual model of IPF is quite simple. You load power system network data into IPF; the IPF solution “engine”
performs the calculations for the solution, and then outputs this solution data.

IPF offers different approaches to accomplish power system solutions. Their style of interaction and processing are
quite different.

• The batch power flow (e.g. bpf or ipfnet) approach. This is an Input-Process-Output approach. You write
a command file containing all of the “orders” that you want filled, and the program performs the actions it
determines are necessary to produce the ordered results.

6 Chapter 2. Contents

http://www.cmake.org


Interactive Power Flow

• The Graphical User Interface (GUI) approach. This is command oriented - you click a button or enter a command,
and it is executed immediately by the backend power flow engine (ipfsrv).

• The CFLOW approach (the C API called libcflow). This is a programming based approach where you write
C code to interact with IPF.

Two Domain Specific Languages (DSLs) called Powerflow Command Language (PCL) and Power Flow Control (PFC)
allow users to define the “scenarios” or “orders”. PCL is directly available through a Command Dialog window in
the X Window GUI and can be used with the ipfbat program. PFC is used with the bpf program. See Power Flow
Control (PFC) for details of the PFC syntax and Powerflow Command Language (PCL) for details of the PCL sytanx.

Note: The PFC syntax was developed first and later Bonneville Power Administration (BPA) added the
PCL syntax. They referred to PCL as the “new style”, and the PFC as the “old style”. These two sets of
commands are not completely compatible even though the “new style” command set and syntax is closely
modeled on the “old style.”

The bpf Batch Approach

When you use bpf, you must first create a Powerflow Command Language (PCL) file with the appropriate commands
to accomplish the solution task at hand. At runtime these commands are accepted by ``bpf``and executed according
to a logical processing order determined by the program. Hence you need not be concerned with the ordering of
commands in your PFC file. Input commands will be processed first, and a solution done automatically before any
output is produced. Finally, a new base file will be created, if you have requested one. See PFC Examples for examples
of PFC files.

Fig. 2.2.1: BPF Information Flow Model

2.2. Overview 7

https://www.bpa.gov/


Interactive Power Flow

The ipfbat Batch Approach

ipfbat allows you to interact with the solution “engine” (ipfsrv) without the GUI. You first create a PCL file with
the appropriate commands, in the right order, to accomplish the solution task at hand. At runtime these commands are
interpreted by ipfbat. The PCL file commands are processed sequentially. Additional PCL command files may be
specified by name, so that a “chain” of PCL files may be processed in one run.

The GUI Approach

When you use the GUI approach, you use an X Window graphical interface with dialog boxes, menus, windows, etc.
This makes data input, output, and manipulation easy. In addition to allowing basic case solution tasks to be accom-
plished, certain specialized tasks such as line impedance calculations are available. See Calculating Line Impedance
for details. However, for more involved tasks, you’ll need to use the bpf approach. For information about how to work
with the GUI dialog boxes, menus, windows, etc., see X Window Graphical Interface (gui). That section also has a
tutorial to show you how to solve straightforward power system cases.

Fig. 2.2.2: PCL Information Flow Model

The core powerflow engine (ipfsrv) can be ran on separate machine from the graphical user interface. These two
(gui and ipfsrv) processes are joined by interprocess communication (IPC) routines that shuttle data and instruction
messages back and forth between the GUI and powerflow program using sockets. ipfsrv serves primarily as a solution
and data engine that sends and receives data when requested by the user through the GUI.

8 Chapter 2. Contents



Interactive Power Flow

The CFLOW Approach

Many times users need to do a large number of similar runs or they need to process data from another system or set of
files before running studies. CFLOW is a C library API (libcflow) for IPF. To use CFLOW, you write a C program,
including the header file cflowlib.h, which defines all the structures, unions, and functions which allow access to
the powerflow input and solution. To retrieve solution values, you call various CFLOW functions. The API interacts
with ipfsrv interally. This allows you to do things like ask for a new solution, change the model, etc. See CFLOW C
API (libcflow) for details on the API and examples.

2.2.2 Executables

IPF consists of many executable programs. Several of the most common executables are briefly described below.

bpf

Command line program that performs power flow. bpf is the batch form of the powerflow
program and unlike ipfsrv it doesn’t use socket communication to interact with the powerflow
engine. Rather it uses direct code library linking. It allows one or more scenarios to be defined
in input files and run all at once via a call to bpf from a command line terminal. It executes
using the commands from a Power Flow Control (PFC) file. Example usage: bpf bench.pfc.
The PFC commands (i.e. the content of the .pfc file) used with bpf allow for complete power
flow runs including defining the network model and commands to perform various operations.
The Record Formats section describes the network model records available and the Power Flow
Control (PFC) section describes the PFC syntax and commands available. More documentation
about this program is in bpf section.

gui

Launches the Graphical User Interface program built with `Motif X Window`_ that works in
conjunction with the power flow server, ipfsrv. When the editing and displaying of buses
and branches is being handled by the gui process, the work of calculating solution voltages for
a given power system network is done by ipfsrv, which is just the bpf program in a differ-
ent guise. More documentation about this program is in X Window Graphical Interface (gui)
section.

ipfsrv

The power flow service daemon which runs as the backend component of the gui. It executes
Powerflow Command Language (PCL) commands through scripts dispatched from the gui.
See ipfsrv for more details.

ipfbat

Command line program that is the batch version of ipfsrv. It accepts a Powerflow Command
Language (.pcl) file. Plotting can be done with a control file; however, for most plots ipfplot
is easier to use. Example of use: ipfbat bench.pcl. The PCL commands used with ipfsrv
and ipfbat are described in Powerflow Command Language (PCL).

ipfcut

Command line program that cuts out a subsystem from a solved base case file (.bse). Flows
at the cut branches are converted into equivalent generation or load on specially formatted +A
continuation bus records (read more about Continuation Bus Data (+)). An ensuing power flow
run should solve with internal branch flows and bus voltages which are identical to those quan-
tities in the original base case. More documentation about this program is in ipfcut section.
Several methods are available to define the cut system: bus names, zones, base kVs, and indi-
vidual branches. A pi-back feature replaces selected buses with a passive-node sequence (lines
consisting of sections) with the original loads pi-backed in proportion to the line admittances.

2.2. Overview 9



Interactive Power Flow

ipfplot

Command line plotting program to produce printed maps in batch. The program accepts a
coordinate file (.cor) and a base case file (.bse) on the command line, as well as an optional
second base case file. When the second base case file is specified, a difference plot is produced.
You can also use ipfplot to produce bubble diagrams. The same coordinate files are used
for both gui and ipfplot, but not all capabilities are available in gui. Documentation is in
Network Diagrams. More documentation about this program is in ipfplot section.

tsp

Command line program that performs transient stability studies. Users specify power system
network distrubances (line faults, generator trips), and the program simulates the affects on
power system dynamics including key data points like generator rotor angle. This tool can
be used to evaluate short term (on order of seconds to minutes) affects of these disturbances.
Example of use: tsp bench.fil. More documentation about this program is in Transient
Stability Program (tsp) section.

ipfnet

The command line batch version of the “save netdata file” command built into the gui / ipfsrv.
This program generates a WSCC-formatted network data file in any of the following dialects:
BPA, WSCC, or PTI. “Dialects” means that the file is still WSCC, but the data is generated with
special processing or restrictions and is destined for use with other programs. In the case of the
PTI dialect, that data is preprocessed by the PTI-proprietary conversion program WSCFOR.
Detailed documentation is in ipfnet.

ipf_reports

The command line report tool to create output reports and summaries from solved base cases
(.bse). Enter ipf_reports from the command line and follow the prompts.

ips2ipf

The program that converts a network data file from WSCC’s Interactive Powerflow System
(IPS) format to IPF format. Duplicate buses are renamed; Load Tap Changer (LTC) steps are
converted to taps, shunt susceptance on slack and BQ buses are transferred to +A records; sec-
tionalized lines containing a section 0 are renumbered 1, 2, . . . ; BX, X, and remote controlled
bus data are converted to IPF format, etc. Documentation is in IPS IPF Differences.

2.2.3 Network Data

A core component to any power system analysis problem is the power system network (the interconnected lines, gen-
erators, loads, transformers, nodes/buses, breakers, and other components). In IPF, this is referred to as Network Data.
Network Data defines the structure (connectivity) and properties (base voltage, real power injections, real and reactive
power loads, transformer tap settings, etc.) of the power system network. This data is defined in files that contain bus
(nodes) and branch (lines, transformers, etc.) records. Most of the input files are ASCII text files. But one important
file, the base case file (.bse), is in binary format. You can, of course, edit ASCII text files with any text editor. This is
often done, but your data integrity is safer if you do all the editing you can in the GUI. The base case binary file cannot
be edited with an ordinary text editor, but can in effect be edited via the GUI when you have a base case file loaded.

There are multiple methods for specifying the Network Data. The following is a list of the various methods with
descriptions.

.pfc

This input file contains job control information for the bpf program. This file may contain Network
Data explicitly (listing out Record Formats right in the file), but more often includes a property called
NETWORK_DATA that specifies a file containing the Record Formats in ASCII format. Alternatively, users

10 Chapter 2. Contents



Interactive Power Flow

can specify a property called OLD_BASE that specifies a base case (.bse) file, or other job control data to
be described. Keeping the Network Data out of the .pfc file allows more clear separation between the
commands of the batch study and the network model.

You can edit this file using any ASCII text editor to add, modify, and delete commands and data records.
See PFC Examples for examples.

NETWORK_DATA

This ASCII text input file consists of area, bus, and branch records. It must not contain modification
records.

This file can be maintained by using an ASCII text editor. Or you can edit the records you want in the GUI
through the various dialog boxes and then save a new NETWORK_DATA file. In the file, data records may be
in random order, but actual processing is done in the following order:

1. Area interchange records.

Each area record identifies a composition of zones whose member (associ-
ated) buses define specific aggregate quantities that may be controlled to spec-
ified export values.

A (Area interchange records)

I (Area intertie records)

2. Bus data record group containing at least two records.

Each bus data record identifies one bus in the network. Buses are uniquely identified
by their bus name and base kV.

B (Bus records)

+ (Continuation bus records)

X (Switched Reactance records)

Q (PQ Curve data records)

3. Branch data record group containing at least one record.

L (AC or DC Transmission line records)

E (Equivalent Branch records)

T (Transformer records)

R (Regulators (Automatic or LTC transformer) records)

Branch data entered in any of the ASCII files is single-entry or one-way only. This means, for example, that
a branch connecting buses A and B has a user-submitted entry (A,B) or (B,A) but not both. The program
transposes the record internally as required during execution. Normally which way the branch is entered
does not matter, but it does affect the default end metered on a tie line, and the physical position of line
sections. See Record Formats, for a discussion of this feature.

Branches are uniquely identified by three fields:

• Their terminal bus names and base kVs.

• Their circuit or parallel ID code.

• Their section code.

BRANCH_DATA

2.2. Overview 11



Interactive Power Flow

This ASCII text input file contains the branch data of all branches coded with in-service date and out-of-
service date. This file is searched for branches in service on the date requested. bpf selects the appropriate
branches.

NEW_BASE

This program-generated, binary output file contains complete base network data and steady-state operating
values for the case being processed. This file is identical in format to the OLD_BASE file. NEW_BASE simply
designates the file when it is produced as the output from a recently concluded case study. See The BASE
(.bse) File section for more details on this file.

OLD_BASE

This program-generated, binary input file contains complete base network data and steady-state operating
values. This file is identical in format to the NEW_BASE file. OLD_BASE simply designates the file when it
functions as an already existing input file. See The BASE (.bse) File section for more details on this file.

CHANGE

This ASCII text input file contains changes (new and modification records) to the data input from any
combination of NETWORK_DATA, BRANCH_DATA, and OLD_BASE files making up the case to be studied.
These change records change the input data for the base case.

Printout File .pfo

This is an ASCII text output file that contains bus, branch, and solution data from a completed case study
and is intended for ordinary, paper hardcopy output.

Microfiche file .pff

This is a special format output file that contains bus, branch, and solution data from a completed case study
and is intended for microfiche format.

Table 2.2.1: IPF Input/Output Files
File For-

mat
Input/Output (I/O) Created

by
Edit-
ing

Information Contained

.pfc ASCII bpf (I) User Yes Bus, Branch, Commands, File
Names

.pcl ASCII gui, ipbat (I) User Yes Commands, File Names
NET-
WORK_DATA

ASCII bpf (I)
GUI,IPFBAT
(I/O)

User gui
ipfnet

Yes Bus, Branch

BRANCH_DATA ASCII Input Only User Yes Branch
OLD_BASE .bse Bi-

nary
Input Only IPF No Bus, Branch, Solution Values

CHANGES ASCII Input or Output User gui Yes Bus, Branch, Modications
NEW_BASE .bse Bi-

nary
Output Only IPF No Bus, Branch, Solution Values

Printout le
(<name>.pfo)

ASCII Output Only bpf No Input Data and Solution Reports,
User Analysis

Microche le
(<name>.pff)

ASCII Output Only bpf No Input Data and Solution Reports,
User Analysis

Debug le
(<name>.pfd)

ASCII Output Only bpf No Solution arrays and iteration pro-
cessing

Printout le (<lo-
gon>.pfo)

ASCII Output Only gui No Messages, Iteration Summary

Debug le (<lo-
gon>.pfd)

ASCII Output Only gui No Solution arrays and iteration pro-
cessing

12 Chapter 2. Contents



Interactive Power Flow

2.2.4 The BASE (.bse) File

This file, designated OLD_BASE if you are loading it, or NEW_BASE if you are saving it, is binary in format and contains
the following data:

• The case identification, project ID, and two header records.

• The date the case was generated.

• The program version used to generate the file (so future program versions can read the file if file structures
change).

• Up to 100 comment records.

2.3 History

IPF was developed by Bonneville Power Administration (BPA) and its contractors in the 1990s with about 20% of the
cost supported by the Electric Power Research Institute (EPRI). By mutual agreement, as described in EPRI Agreement
RP2746-03 entitled Graphical User Interface for Powerflow, March, 1992,

“all results of this project–including the computer program and its documentation–are to be in the public
domain.”

In a separate Memorandum of Understanding with the Western Systems Coordinating Council (WSCC), BPA agreed
in March, 1992, to

“keep WSCC informed of progress, to make its best effort to develop the program according to the Guide-
lines adopted by the WSCC Computer Program Management Subcommittee, and to make the final results
available for possible further development by WSCC.”

Prior to the development of the Interactive Power Flow in the 1990s, BPA had developed the core power flow program
and a set of tools they called the Power System Analysis Package (PSAP), which were a collection of Fortran-coded
computer programs permitting the analysis of the steady-state operation of an electric power network. PSAP was
developed over a 20-year period and many features were added during this time. Since the core power flow code was
developed in 70s and 80s, it had to make efficient use of computer memory space and computation time, the core
engine uses traditional techniques of large power system analysis including the Newton-Raphson method of solution
of algebraic equations and sparse matrix computation techniques.

The Western Systems Coordinating Council (WSCC) now known as the Western Electricity Coordinating Council
(WECC) had a similar set of tools known as Interactive Powerflow System (IPS) complete with a Domain Specific
Language called Computationally Oriented Programming Environment (COPE) for defining power flow studies in
a programmatic way. Many of the features and data record formats for IPF, especially for transient stability, were
influenced by WSCC’s IPS.

These programs were designed for character-based terminals connected to mainframes. However, the 1980s and 90s
saw the creation and maturation of graphical user interfaces (GUI) based on the mouse, windows, and menus. These
components were generally available on the Macintosh computer since 1984 and on IBM PC-compatible computers
as an option since 1987. The third most popular GUI in the 90s was the one associated with the X Window System.
GUIs were more intuitive and easier to use than character/keyboard-based interfaces. Starting in 1991, BPA began a
two-way joint development of a GUI interface for the powerflow program, based upon the X-Window System and the
Motif X Window GUI. The joint partners were the Electric Power Research Institute EPRI and WSCC. The powerflow
program itself was also restructured and enhanced in the process, and a libcflow library was added as a means to
provide users API access to the IPF functions for use in other programs.

The Bonneville Power Administration (BPA) Transient Stability Program was developed in accordance with specifica-
tions written by the Western Systems Coordinating Council (WSCC), now known as the Western Electricity Coordi-
nating Council (WECC), and was originally written to be executed on a VAX 11/780 computer. With some exceptions
this program closely paralleled the program used in Salt Lake City by the WSCC Technical Staff in the 1980s.

2.3. History 13

https://www.bpa.gov/
https://www.epri.com/
https://www.wecc.org/
https://motif.ics.com/motif/downloads
https://www.epri.com/
https://www.bpa.gov/
https://www.wecc.org/
https://www.wecc.org/


Interactive Power Flow

A copy of the original WSCC specifications for both power flow and transient stability can be found in WSCC Specifi-
cations.

The difference between this version of the program (i.e. tsp) and the one used in Salt Lake City was the control record
requirements for defining the problem such as where the fault is applied, line switching, etc., and the format for all
output options. The formats for almost all other intput data requirements maintain strict compatibility between the two
programs. Therefore, with grateful acknowledgements to the WSCC Staff, a substantial portion of the materials used
in this documentation are reproduced copies taken from the WSCC Program Manual.

Acknowledgement is given to Teshmont Consultants, Inc. of Winnipeg, Manitoba for their many corrections and
additions to the transient stability code.

2.3.1 Original License

Below is a copy of the original license notice from BPA.

The BPA Powerflow software (IPF) is Public Domain; here is a copy of the License.

IMPORTANT NOTE:
IPF is in the public domain and certain conditions apply. The terms in which
it is released are described in the section "Notice to Non-BPA Users" in
each of the IPF manuals.

NOTICE TO NON-BPA USERS:
The Bonneville Power Administration (BPA) releases BPA-developed computer
programs under the following conditions:

1. BPA does not charge for program development costs; however, a fee to cover
costs incurred in answering inquiries is assessed against the organization
receiving the material. This fee typically includes costs for personnel
and computer resources, reproduction, shipping, and postage.

2. BPA cannot provide assistance with conversion to other computers or
consulting services to the program users.

3. In consideration of receipt and acceptance of these programs or portions
thereof, if sold, assigned, or transferred to another organization, you
and your organization agree to advise any third-party recipient in writing
that the program(s) and/or documentation are in the public domain and
available from BPA. The intent of this agreement is to ensure that
BPA-developed or supplied programs, and/or documentation, whether in
whole or in part, that are in the public domain, are identified as such
to recipients.

"LEGAL NOTICE"

Neither BPA nor any person acting on behalf of BPA:

1. Makes any warranty or representation, expressed or implied, with respect
to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or
process disclosed in this report may not infringe upon privately owned
rights; or

(continues on next page)

14 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

2. Assumes any liability with respect to the use of, or for damages resulting
from the use of any information, apparatus, method or process disclosed in
this report.

9/20/95

In keeping with the license, please know that original code is in public domain. Also, you should be able to obtain the
original code released by BPA by contacting Bonneville Power Administration . However, for your convenience the
v0.0.1 release of this project contains the original code released by BPA.

2.3.2 Original Contributors

The original project is the result of a lot of hard work from engineers at BPA and EPRI. These include, but are not
limited to:

• Dan L. Clark

• Jay G. Coleman

• Tsu-huei Liu

• Walter L. Powell

• Bill E. Rogers

• William D. Rogers

• K E Rowell

• John L Rutis

• David M Stefonik

• D M Syzmanski

2.4 Application Examples

2.4.1 Introduction

Some typical power system design application examples are given in this section to demonstrate possible applications
of the core power flow programs IPF provides. Each example indicates possible uses of the program relative to some
stated network planning objectives.

2.4.2 Setting Up a Network Data File

Use the following values for this four-bus network:

Line Data
• Use 100 MVA, 500 kV base.

• X = .525 ohm/mile, X/R = 18.

• B/2 = .01024 pu/mile, where B is the total line charging and B/2 is equal to 𝐵𝑝𝑖, if long-line effect is ignored.

2.4. Application Examples 15

https://www.bpa.gov/
https://github.com/mbheinen/bpa-ipf-tsp/releases/tag/v0.0.1
https://linkedin.com/in/walter-powell-18506b53/


Interactive Power Flow

Fig. 2.4.1: Four Bus Network

• Current Rating is 3000 amps.

Transformer Data
• X = 20% (0.20 pu) on 525 kV, 1770 MVA base.

• Transformer Taps = 22 kV, 525 kV.

Generator Data for Power Flow
• P(max) = 1770MW, P(g) = 1680 MW.

• Q(lim) = +/- 521MVAR.

• Type G bus controlling voltage of GEN HI to 1.08 pu.

Station Service Load
• 190 + j95 (constant power for stability).

Approach The preparation of the network data will be presented in the following steps:

1. Prepare the bus data group.

Define the following buses:

GEN 22
GEN HI 500
INF BUS 500
MID 500

a. Data for GEN 22

Record Type: B
Sub Type: G
Change Code: blank

(continues on next page)

16 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

Owner: blank (not specified)
Name: GEN
kV: 22
Zone: blank (not specified)
Load P MW: 190
Load Q MVAR: 95
Shunt Load MW: blank (or zero)
Shunt Load MVAR: blank (or zero)
P MAX: 1770
P GEN MW: 1680
Q MAX MVAR: 521
Q MIN MVAR: -521
V MAX PU: blank (not specified)
V MIN PU: blank (not specified)
Remote Bus Name: GEN HI
Remote Bus kV: 500
% VARS Supplied: blank (defaults to 100)

b. Data for GEN HI 500

Record Type: B
Sub Type: C (remotely controlled)
Change Code: blank
Owner: blank
Name: GEN HI
kV: 500
Zone: blank
Load P MW: blank (or zero)
Load Q MVAR: blank (or zero)
Shunt Load MW: blank
Shunt Load MVAR: blank
P MAX: blank
P GEN MW: blank (or zero)
Q MAX MVAR: blank
Q MIN MVAR: blank
V Hold PU: 1.08
V MIN PU: blank (not used)
Remote Bus Name: blank (none)
Remote Bus kV: blank (none)
% VARS Supplied: blank (not applicable)

c. Data for INF BUS 500

Record Type: B
Subtype: S
Change Code: blank
Owner: blank
Name: INF BUS
kV: 500
Zone: blank
Load P MW: blank
Load Q MVAR: blank

(continues on next page)

2.4. Application Examples 17



Interactive Power Flow

(continued from previous page)

Shunt Load MW: blank
Shunt Load MVAR: blank
P MAX: blank
P GEN MW: blank
Q SCHED MVAR: blank
Q MIN MVAR: blank
V Hold PU: 1.05
V MIN PU: blank
Remote Bus Name: blank
Remote Bus kV: blank
% VARS Supplied: blank

d. Data for MID 500

Record Type: B
Sub Type: blank
Change Code: blank
Owner: blank (not known)
Name: MID
kV: 500
Zone: blank
Load P MW: blank (zero)
Load Q MVAR: blank (zero)
Shunt Load MW: blank (zero)
Shunt React MVAR: -300
P MAX: blank
P GEN MW: blank
Q MAX MVAR: blank (fixed)
Q MIN MVAR: blank (fixed = Q MAX)
MAX PU: blank (defaults to global limit)
V MIN PU: blank (defaults to global limit)
Remote Bus Name: blank
Remote Bus kV: blank
% VARS Supplied: blank (not applicable)

Note: A bus can only be of one subtype. The subtype of a bus is suggested by information given about the bus. There-
fore, the user should try to be familiar with various bus subtypes and when and how they are indicated by descriptive
information given

2. Prepare the branch data group.

Transformer: GEN 22 GEN HI 500
Line: GEN HI 500 MID 500 circuit 1
Line: GEN HI 500 MID 500 circuit 2
Line: INF BUS 500 MID 500 circuit 1
Line: INF BUS 500 MID 500 circuit 2

Note: 1 and 2 designations are arbitrary identifications for parallel branches. Letters A-Z and digits 0-9 are acceptable.

a. Data for Transformer GEN 22 GEN HI 500

18 Chapter 2. Contents



Interactive Power Flow

Record Type: T
Sub Type: blank
Change Code: blank
Owner: blank (not known)
Name 1: GEN
kV 1: 22
Meter: blank
Name 2: GEN HI
kV 2: 500
ID: blank
Section: blank
Total MVA RATE: 1770
No of CKT: blank
Z_pi
Rpu(100MVA): blank (or zero)
Xpu(100MVA): .01246
Y_pi
Gpu(100MVA): blank (or zero)
Bpu(100MVA): blank (or zero)
Tap 1 kV: 22
Tap 2 kV: 525
Date In: blank (in)
Date Out: blank (not out)

b. Data for Line GEN HI 500 MID 500 circuit 1

Record Type: L
Sub Type: blank
Change Code: blank
Owner: blank (not known)
Name 1: GEN HI
kV 1: 500
Name 2: MID
kV 2: 500
ID: 1
Section: blank
Total AMP RATING: 3000
No of CKT: blank (means 1)
Z_pi
Rpu: .00117
Xpu: .02100
Y_pi
Gpu: blank (zero)
Bpu: 1.024
Miles: 100
DESC DATA: blank
Date In: blank (in)
Date Out: blank (not out)

c. Data for Line GEN HI 500 MID 500 circuit 2

Record Type: L
Sub Type: blank

(continues on next page)

2.4. Application Examples 19



Interactive Power Flow

(continued from previous page)

Change Code: blank
Owner: blank (not known)
Name 1: GEN HI
kV 1: 500
Meter: blank
Name 2: MID
kV 2: 500
ID: 2
Section: blank
Total AMP RATING: 3000
No of CKT: blank (means 1)
Z_pi
Rpu: .00117
Xpu: .02100
Y_pi
Gpu: blank
Bpu: 1.024
Miles: 100
DESC DATA: blank
Date In: blank (in)
Date Out: blank (not out)

d. Data for Line INF BUS 500 MID 500 circuit 1

Record Type: L
Sub Type: blank
Change Code: blank
Owner: blank (not known)
Name 1: INF BUS
kV 1: 500
Meter: blank
Name 2: MID
kV 2: 500
ID: 1
Section: blank
Total AMP RATING: 3000
No of CKT: blank (means 1)
Z_pi
Rpu: .00117
Xpu: .02100
Y_pi
Gpu: blank (zero)
Bpu: 1.024
Miles: 100
DESC DATA: blank
Date In: blank (in)
Date Out: blank (not out)

e. Data for Line INF BUS 500 MID 500 circuit 2

Record Type: L
Sub Type: blank

(continues on next page)

20 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

Change Code: blank
Owner: blank (not known)
Name 1: INF BUS
kV 1: 500
Meter: blank
Name 2: MID
kV 2: 500
ID: 2
Section: blank
Total AMP RATING: 3000
No of CKT: blank (means 1)
Z_pi
Rpu: .00117
Xpu: .02100
Y_pi
Gpu: blank (zero)
Bpu: 1.024
Miles: 100
DESC DATA: blank
Date In: blank (in)
Date Out: blank (not out)

Note: The most difficult task in setting up branch data is determining the per unit (pu) values of R, X, G and B. See
Calculating Line Impedance for some help on this.

Note: In this example, some preliminary information has been furnished on a per-mile basis. We have multiplied the
per-mile quantities by the line lengths in order to obtain the data entered in the record. The reader should generally
use detailed line constant calculation procedures to obtain more accurate values for high-voltage long lines. At 500 kV,
100 miles should be considered a long line. Energy conservation analysis is sensitive to the accuracy of high-voltage
long-line branch data and transformer branch data.

Derivation of Transformer Xpu on 500kV, 100 MVA:

(𝑋𝑝𝑢𝑜𝑛500𝑘𝑉 100𝑀𝑉𝐴) = (𝑋𝑝𝑢𝑜𝑛525𝑘𝑉 1770𝑀𝑉𝐴) * 525 * 525
500 * 500

* 100

1770

= 0.20 * 525 * 525
500 * 500

* 100

1770
= 0.012458

Derivation of Line Xpu on 500 kV, 100 MVA:

All four lines are the same:

𝐵𝑎𝑠𝑒𝑖𝑛𝑝𝑒𝑑𝑎𝑛𝑐𝑒𝑖𝑛𝑜ℎ𝑚𝑠 =
𝐵𝑎𝑠𝑒𝑘𝑉 *𝐵𝑎𝑠𝑒𝑘𝑉

𝐵𝑎𝑠𝑒𝑀𝑉 𝐴

=
(500)(500)

100
= 2500𝑜ℎ𝑚𝑠

2.4. Application Examples 21



Interactive Power Flow

Ignoring long-line effect, reactance for 100-mile line is 52.2 ohms:

=
52.5

2500
𝑝𝑢

= 0.02100𝑝𝑢

Derivation of Line Rpu on 500 kV, 100MVA:

All four lines are the same:

2.4.3 New Facilities

The purpose of this example is to provide new generating facilities to serve the growing loads near the town of Keller
and Mount Tolman.

Proposed New Facility

The proposed facility includes a new substation at NEW SUB, a 21-mile 230 kV line tapped from the A SUB - B SUB
No. 2 line and another line to D SUB tapped from A SUB - NEW SUB line but which will be built and owned by
another utility. The equipment at NEW SUB substation will include a 25 MVA transformer with protective equipment
serving a 34.5 kV load. In the diagram on the following page, starred or dotted lines are the proposed facility while
the dashed lines indicate existing facility. This proposed facility may be one among other possible alternatives. Each
alternative, and modifications thereof, will be considered a case and submitted to the power flow program for analysis
and report.

Possible Uses of IPF

IPF will be used to study the power flows, voltage regulation and reliability of service utilizing the proposed facility.

The processes (POWERFLOW) and (OUTAGE_SIM)will be used to check power flow as well as reliability. Refer to Power
Flow Control (PFC), for complete description of these processes.

Suppose the base network which the proposed new facility will amend has been described in an old base file named
BASENET.BSE. The following program control file can be built for this case:

(POWERFLOW, CASEID = EXAMPLE1, PROJECT=KELLER-SUB)
/OLDBASE FILE = BASENET.BSE\
/NEWBASE = EXAMPLE1.CAS\
....
.... Optional Network Solution Qualifiers Listed Under
.... (POWERFLOW)
/CHANGES
B - record for NEW SUB 34.5
B - record for NEW SUB 230
B - record for NEW SUB Tap 230
B - record for D SUB 230
B - record for A SUB TAP 230
L - record to delete A SUB 230 B SUB 230 2
L - record for A SUB 230 A SUB Tap 230
L - record for A SUB Tap 230 B SUB 230
T - record for NEW SUB 230 NEW SUB 34.5
. The above record formats are described
. Under appropriate Heading starting with the key letter

(continues on next page)

22 Chapter 2. Contents



Interactive Power Flow

Fig. 2.4.2: A-SUB - New SUB 230 kV Line

2.4. Application Examples 23



Interactive Power Flow

(continued from previous page)

(POWERFLOW, CASEID=EXAMPLE1, PROJECT=NEW-SUB)
/OLDBASE FILE=EXAMPLE1.CAS
/OUTAGE_SIM
....
.... Optional Qualifiers Listed Under /OUTAGE_SIM
....
(STOP)

The output listings from this case will be inspected to make sure no overloads occur during normal operation as well
as during the outages of key lines.

Special environmental concerns may suggest evaluation of alternatives to the river crossing indicated in the exhibit.
Conductor sizing may also be influenced by energy conservation (loss-reduction) considerations. The effect of each
alternative can be determined from the network solution output listing.

In this example, the major point to monitor is the impact of tapping lines since segments of a tapped line perform
differently from the untapped line.

2.4.4 Reconductoring

The purpose of this example is to cure poor voltage regulation at delivery point C occurring when lines AB, BC or DE
are out of service, and to improve energy conservation.

Proposed New Facility

Lines AB, BC and DE will be reconductored to reduce series impedances using higher capacity lines. The higher
capacity lines will give rise to acceptable voltages and save energy otherwise lost in transmission.

Possible Uses of Powerow

IPF can be used to study the power flows, voltage regulation and reliability of service utilizing the proposed facility. In
reference to the Program Control Language:

1. The base case is run to determine power flows, voltage levels and transmission losses.

2. The change case is run to modify the data for lines AB, BC and DE reflecting the new conductors
used. Power flows, voltages and losses will again be reviewed.

3. The outage simulations case is run to verify the effect of certain lines being out of service on power
flows, voltage levels, line loading and line losses. If the base network to be amended by the proposed
new facility is described in an old-base file named BASENET.BSE, the program control file following the
diagram of the reconductoring can be built for this project.:

( POWERFLOW, CASEID = EXAMPLE30, PROJECT = RECONDUCT )
/ OLD_BASE, FILE = BASENET.BSE
. . .
. . . Optional network solution qualifiers.
. . .
( NEXTCASE, CASEID = EXAMPLE31, PROJECT = RECONDUCT )
/ NEW_BASE, FILE = EXAMPLE31.CAS
. . . Optional qualifiers to override options
. . . already selected above. This should be

(continues on next page)

24 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

. . . an empty set.
/ CHANGES
L - record to modify line AB
L - record to modify line BC
L - record to modify line DE
( NEXTCASE, CASEID = EXAMPLE32, PROJECT = RECONDUCT )
/ OUTAGE_SIM
. . .
. . . Optional simulation qualifiers.
. . .
( STOP )

2.4.5 Series Compsensation

The purpose of this example is to add series compensation to existing parallel lines so as to cause more power to be
shifted to these lines from lines with less loss-reduction.

Proposed New Facility

A 540 MVAR series capacitor at Station C is installed (270 MVAR per line), along with additional control and protective
equipment. Station C is sited 72 miles from Station A and 102 miles from Station B.

Possible Uses of Powerow

IPF will be used to study the power flows utilizing the proposed facility.

If the base network amended by the proposed new facility is described in an old-base file named BASENET.BSE, then
the following program control file can be built for this case:

( POWERFLOW, CASEID = EXAMPLE4, PROJECT = SERIES COMP )
/ OLD_BASE, FILE = BASENET.BSE
. . .
. . . Optional solution qualifiers.
. . .
/ CHANGES
L - record to delete line AB circuit 1
L - record to delete line AB circuit 2
L - record to add Ckt circuit 1 section 1 (line AC)
L - record to add Ckt circuit 1 section 2 (capacitor)
L - record to add Ckt circuit 1 section 3 (line CB)
L - record to add Ckt circuit 2 section 1 (line AC)
L - record to add Ckt circuit 2 section 2 (capacitor)
L - record to add Ckt circuit 2 section 3 (line CB)
( STOP )

2.4. Application Examples 25



Interactive Power Flow

2.5 Record Formats

2.5.1 Overview

This section describes all data record formats recognized by IPF. Records are used to represent buses, lines, transform-
ers, reactive devices, area interchange control, and more. Records defined in the input files for the command line tools
(bpf, ipfbat, ipfcut, etc.) are fixed column format. Please note that all information must be in the correct columns;
you will experience processing errors otherwise. Most records are also available in the X Window GUI interface via
forms and in libcflow via C structs. The record descriptions in this section are organized alphabetically by record
ID as you go through the section (except for the DC bus records which follow the AC bus records). The table below
enables you to quickly locate a specific record format entry. The table also gives you a quick description of each record
format.

Each record description in this section has a “card” figure that shows you where to put record identification and the
other fields and properties of the record. These “card” figures are artifacts from the days of punchcards and mainframes,
but they do provide good visual represenation of the data for each record format when manually creating intput files
for IPF. Each card figure has a legend showing whether each fields is required, optional, or ignored.

Each entry also has a table of column descriptions and data formats. This supplements the card figure. Additional text
accompanies any record formats that need extended discussion.

Some data are real numbers. For these fields, the implicit decimal point is shown as a black dot on the card. figure,
just above the information entry row. Note that you can enter data with an explicit decimal point in any position within
the field. A black dot that appears at the extreme right side of a field represents a decimal point at the right end (least
significant digit) of a number. All other black dots appear above a line, indicating that the decimal point will fall
between the digits on either side.

All IPF data record types are identified by the characters in columns 1 and 2. To fully specify a particular record,
additional fields need to be filled in. These additional ID fields are usually the bus name and base kV. ID fields are
called out in the column description tables.

Table 2.5.1: Record Types
Record ID (columns 1-2) Field Width Description
Period (.) 120 Comment (not printed)
+ 80 Bus continuation
A 80 Area interchange control
AO 80 Area output sort
- - General AC bus description
B 80 AC bus - load bus
BC 80 AC bus - voltage controlled by BG bus
BE 80 AC bus - constant voltage
BF 80 AC bus - special purpose bus for Newton-Raphson solution
BG 80 AC bus - generator
BQ 80 AC bus - constant voltage within Q limits
BS 80 AC bus - system slack bus
BT 80 AC bus - LTC transformer controlled AC bus
BV 80 AC bus - constant Q within V limits
BX 80 AC bus - attempts constant V using switched Q specied on X record
BD 80 Two-terminal DC bus
BM 80 Multi-terminal DC bus
DA 80 Delete buses by area
DZ 80 Delete buses by zones
E 88 Equivalent branch (has extended ratings)

continues on next page

26 Chapter 2. Contents



Interactive Power Flow

Table 2.5.1 – continued from previous page
Record ID (columns 1-2) Field Width Description
I 80 Area intertie I record
L 88 Transmission line (has extended ratings)
LD 80 Two-terminal DC line
LM 80 Multi-terminal DC line
PO PZ PN PA PB PC PD 80 Factor changes
QN QP QX 120 Reactive capability curve
R RV RQ RP RN RM 80 Regulating transformer
RZ 80 VAR compensator model
T 92 Transformer (has extended ratings)
TP 92 Phase shifter (has extended ratings)
X 80 Switched reactance (BX record)
Z 80 Zone rename

2.5.2 System Changes

After a base case has been established, it may be changed with the use of change records. The change records are
identified as system data records which immediately follow the network-solution qualifier /CHANGES statement. See
CHANGES for details.

The change records are system data records with a change code in column 3. Each of the input data forms describe the
permissible types of changes under the caption CHANGE CODES. In all, there are five types of changes.

• Additions: Change code = blank

The data record identification must be unique to the system. The contents of the record must be complete as if it
were being submitted to build a base case.

• Deletions: Change code = D

Only existing data may be deleted, and only the identification fields are needed. Numerical data in any other field
is ignored. Special conditions are given:

– Deleting a bus automatically deletes all continuation bus data, switched reactance data and all branch data
associated with that bus. Deleting all branches connected to a bus will result in an error. It is better to
delete the bus. A bus should not be deleted and added back in the same case with the same name in a single
change file.

– Deleting all transformer banks between two buses will automatically delete any regulating transformer data.

– A line composed of sections may be deleted in its entirety by deleting section 0 (zero) or blank. The alter-
native is to delete each section with a separate change record. If a section is deleted the line is reconnected
without that section. Transformer sections cannot be deleted.

– A branch composed of parallel lines between two buses may be deleted in its entirety by entering a * in
place of CKT ID. This provides a means of disconnecting two directly connected buses from each other.
The branches may also be deleted individually.

– A blank branch ID is legitimate identification.

– Changing a bus from type X to any other type will delete all switched-reactance data automatically. No
separate X delete record should be included.

• Elimination: Change code = E

This causes the elimination of all existing A (area interchange) records to make room for possible new A records.
The user should note that this change code works for A records only.

2.5. Record Formats 27



Interactive Power Flow

• Modifications: Change code = M

All currently existing system data may be modified, which means changing the value of some quantity of system
data. Data in the identification field cannot be changed.

Only the data to be changed is entered on the change record. Nonblank fields constitute data modification, while
blank fields indicate that the quantity is not to be changed. A blank and a zero quantity on the change record are
distinguishable. Often, it is necessary to change a quantity into a blank. Examples are the bus zone name and
the bus subtype. To change these into blank quantities, a 00 or 0 must be entered in the appropriate respective
column fields. Special recognition is conferred on these change quantities.

• Restorations: Change code = R

Previously outaged system data may be reactivated with the use of restore change records. This type change
permits data to be restored to the system with change records using the identification fields only. Any data fields
on the restore record will be ignored, and the reactivated data assumes the same quantities it had prior to deletion.
Restoring data is an option. Data could be re-entered with additional type change records as well. The operations
and rules are similar to those for deletions. However, some important differences must be explained.

– Restore changes are permissible only with data deleted in a previous change case but within the same base
case. You cannot restore data outaged in a previous OLD_BASE case.

– Area interchange records may not be restored.

– Restoring a bus restores only branches which connect to a viable system base. In some cases, not all of the
outaged branches can be restored.

– Restoring all transformer banks between two buses will not automatically restore any regulating transformer
data. If this is intended, the regulating R transformer data must be restored separately.

– A restored branch record must match the branch code as well as the identification fields. For example, if
the branch is type L, the restore record must match the type.

The change records are read, interpreted and stored for further processing. As they are read the following are
processed immediately:

– Area Interchange (A-blank)

– Zone Renames (Z-blank)

– Area Deletes (DA)

Processing of changes then continues in the following manner:

– Changes Percents (P)

– Deletes

– Adds/Restores

– Modifications

Note: If more than one modification for the same data item occurs, the changes will be made in the order encountered.
In IPF, no message will be given the user.

If fatal data errors are encountered in batch mode, switches are set and the processing continues only to discover
additional errors, list all changes and exit. For changes to existing data, component identification must be specified
exactly as in the base case file. If fatal errors are encountered in interactive mode, appropriate diagnostics are issued
so that the user can remedy the faulty command or data.

28 Chapter 2. Contents



Interactive Power Flow

2.5.3 Comment

This comment text is used to annotate the program control file, network data file, or change file. Its contents are not
added to the output listings nor saved in the binary base case file.

Simply place a . (period character) in the first column and the comment in the rest of the columns. This is also handy
to temporarily deactivate a command or data line.

Fig. 2.5.1: Comment Input Format

Table 2.5.2: Column Descriptions for Comment Format
Column ID Field Format Content
1 yes A1 . (period)
2-120 no A119 Text string for record comment

2.5.4 Continuation Bus Data (+)

Continuation bus data is identified with a + in column 1 and supplements the data on any AC bus record. It specifies
additional generation, load and shunt admittance at the bus and permits additional classification and utilization of data.
Generally, it permits a more detailed analysis of data. Its most typical application is distinguishing loads represented
by several different owners at the same bus. The following fields are for identification:

• Bus name and base kV

• Code and code year

• Ownership

Each bus may have more than one continuation record. However, some means of distinction must be made in the minor
identification fields of code year or owner. See figure and tables below for details.

2.5. Record Formats 29



Interactive Power Flow

A sample coding sheet and column descriptions for continuation bus data follows.

Fig. 2.5.2: Continuation Bus Data Input Format

Table 2.5.3: Classification Codes
Code Description
A Equivalent injection data from network reduction. Note that data associated with this code is not subject to

the effect of factor change (P) records.
C Shunt MW or MVAR
F Industrial rm load
I Industrial interruptible load
N Nonindustrial rm load (bus ownership differs from load ownership)
P Industrial potential load
S Nonindustrial secondary load
Blank Nonindustrial rm load (bus ownership = load ownership)

In addition to the special classifications codes of column (2:2), the code year may convey special meaning or models
to the continuation bus records. The table below summarizes the features.

30 Chapter 2. Contents



Interactive Power Flow

Table 2.5.4: Special Constant Current and Constant Impedance Loads
Code Code

year
P_load Q_load G_shunt B_shunt Description

+A Constant power
MW load (gener-
ation if negative)

Constant power
MVAR load (gener-
ation if negative)

Constant admit-
tance MW eval-
uated at nominal
voltage

Constant admit-
tance MVAR
evaluated at
nominal voltage

Quantity gen-
erated by
Network Data
or Cutting
routines

+A 00 Constant power
MW load (gener-
ation if negative)

Constant power
MVAR load (gener-
ation if negative)

Constant admit-
tance MW eval-
uated at nominal
voltage

Constant admit-
tance MVAR
evaluated at
nominal voltage

Quantity gen-
erated by
Network Data
routine

+A 01 Distributed con-
stant current MW
load (generation
if negative) eval-
uated at nominal
voltage

Distributed constant
current conjugate
MVAR load (gen-
eration if negative)
evaluated at nominal
voltage

Equivalent
MW shunt
admittance

Equivalent
MVAR shunt
admittance

Quantity gen-
erated by Net-
work Reduction
routines

+A 02 Distributed MW
load (generation
if negative)

Distributed MVAR
load (generation if
negative)

Equivalent
MW shunt
admittance

Equivalent
MVAR shunt
admittance

Quantity
generated
by Network
Reduction;
denote equiv-
alent shunt
admittances

*I Constant current
MW load (gener-
ation if negative)
evaluated at
nominal voltage

Constant current
conjugate MVAR
load (generation if
negative) evaluated
at nominal voltage

Not applicable Not applicable Quantity
generated by
%LOAD_DISTRIBUTION

*Z Constant power
MW load (gener-
ation if negative)

Constant power
MVAR load (gener-
ation if negative)

Constant admit-
tance MW load
(generation if
negative) evalu-
ated at nominal
voltage

Constant admit-
tance MVAR
load (generation
if negative) eval-
uated at nominal
voltage

Quantity
generated by
%LOAD_DISTRIBUTION

*P Constant power
MW load (gener-
ation if negative)

Constant power
MVAR load (gener-
ation if negative)

Not applicable Not applicable Quantity
generated by
%LOAD_DISTRIBUTION

2.5. Record Formats 31



Interactive Power Flow

Table 2.5.5: Column Description for Continuation Bus Data
Column ID Field Format Description
1 yes A1 Record type; + for all continuation bus data
2 yes A1 Code (See code types above.)
3 no A1 Change code
4-6 yes A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 yes A2 Code year—alphanumeric subtype of code
21-25a no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR at base kV (+) = Capacitive (-) = Inductive
43-47 no F5.0 P GEN MW
48-52 no F5.0 Q GEN MVAR (or Q MAX) (+) = Capacitive (-) = Inductive
53-57 no F5.0 Q MIN in MVAR
75-77 no A1, A2 Energization date month and year {month = 1,2,3,4,5,6,7,8,9,O,N,D}

a. If the Code (column 2) is A and the Code year (column 19-20) is 01, the load quantities are constant current-
constant power factors and are:

1. Interpreted as MW and MVAR evaluated at base kV (+) = Inductive (-) = Capacitive

2. Evaluated as: 𝑃 + 𝑗𝑄 = (𝐼*)|𝑉 |

Note: Q_max and Q_min represent inequality constraints (Q_max > Q_min). However special concerns apply for bus
subtypes blank, C, T and V, where the Q is constrained. In order to assign appropriate values for scheduled Q, Q_min is
first examined. If Q_min < 0 and Q_max > 0, the limits are recognized as erroneous constraints and both are ignored.
If Q_min = 0, then the schedule Q is always Q_max

2.5.5 Area Interchange Control (A)

A network may be partitioned geographically by area. Similarly, areas may be partitioned by zones. The net power
exported from each area can be specified with an area interchange record. Export power is controlled by varying the
area slack bus generation. Interchange export is measured as the sum of the exported power on all area tie lines metered
at the area boundaries. The total net export of all areas must add to zero; otherwise, the area interchange control is
aborted. See the figure and tables below.

Valid subtypes are blank, 1, . . . , 9, with 1, . . . , 9 being continuation records. This allows up to 100 zones to be defined
in an area.

In order for area interchange control to be activated, A records must be defined and the /AI_CONTROL option must be
set to the default, CON (Control). Three slack bus restrictions pertain to each area.

• One area slack bus must be the system swing bus.

• Each area slack bus must be within the area it controls.

• For all slack buses the P generation is variable.

Note: Area Continuation records (A1, . . . , A9) accept only area name and zones 1-10 fields.

32 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.3: Area Interchange Control Input Format

Table 2.5.6: Column Description for Area Interchange
Col-
umn

ID
Field

For-
mat

Description

1 yes A1 Record type — A
2 yes A1 Subtype — blank, 1, . . . , 9
3 no A1 Change code — see System Changes
4-
13

yes A10 Interchange area name — Name of area consisting of one or more zones. Alphanumeric entries
are permitted.

14-
25

no A8,F4.0Area slack bus name and base kV. (Does not apply to subtypes A1, . . . , A9.)

27-
34

no F8.0 Scheduled export — MW ow scheduled (+) out of area or (-) into area. If I (interchange) records
are present for this area, the net schedule will be overwritten with the netting computed from
the I records. (Does not apply to subtypes A1, . . . , A9.)

36-
64

no 10(A2,1X)Zones to be included in the interchange area named in columns 4-13. A blank zone terminates
the scan unless it is zone 1. All zones must be listed within some area, but no zone may be
common to more than one area.

73-
76

no F4.3 Maximum per unit voltage. (Does not apply to subtypes A1, . . . , A9.)

77-
80

no F4.3 Minimum per unit voltage. (Does not apply to subtypes A1, . . . , A9.)

2.5.6 Area Output Sort (AO)

The order of buses in the input and output listings may be grouped into areas with arbitrary zone configurations. The
areas are sorted alphabetically and the buses within each area are then sorted alphabetically.

These records permit an area to be defined independently of any area interchange. Once introduced, these records
become a permanent part of the base case file. A coding sheet and description of the record columns follows:

2.5. Record Formats 33



Interactive Power Flow

Fig. 2.5.4: Listing by Sorted Areas Input Format

Table 2.5.7: Column Description for Area Output Sort
Col-
umn

ID
Field

Format Description

1 yes A1 Record type — A
2 yes A1 Subtype — O
3 no A1 Change code — see System Changes
4-13 yes A10 Area Name — These names are independent of area interchange names but may

be identical.
15-79 no 22(A2,1X) Zone composition list — a blank zone terminates the zone scan unless it is zone

1.
80 no blank

2.5.7 AC Bus Data

Bus records identify nodes in the network. The following description applies to AC buses only; DC buses are identified
by a subtype D or M and are described in Two-Terminal DC Bus (BD) and Multi-Terminal DC Bus (BM).

Each AC bus consists of three attributes: generation, load, and shunt admittance. Various subtypes assign unique
characteristics to these attributes. Some affect conditions in the solution; others affect only the allocation of quantities
in the output listings.

The various subtypes permit different models to represent the operation of the system. Most buses have constant real
injection. Exceptions are the system slack bus and any area interchange slack buses.

34 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.5: Bus Data Input Format

Table 2.5.8: Column Description for AC Bus Data
Column ID Field Format Description
1 yes A1 AC B type record
2 no A1 Subtype
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-26 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR at base kV (+) = Capacitive (-) = Inductive
43-47 no F5.0 P GEN MW
48-52 no F5.0 Q GEN MVAR (+) = Capacitive (-) = Inductive
53-57 no F5.0 Q MIN MVAR
58-61 no F4.3 V HOLD - V MAX (in per unit)
62-65 no F4.3 V MIN (in per unit)
66-73 no A8 Controlled bus name
74-77 no F4.0 Base kV
78-80 no F3.0 Percent of vars supplied for remote bus voltage control.

For all subtypes, the following diagram illustrates the reactive allocation scheme.

Allocation of reactive facilities is complex. These may be allocated by equality constraints (𝑄𝑛𝑒𝑡 is constant), inequality
constraints (𝑄𝑛𝑒𝑡 varies between a minimum and maximum value), or no constraints.

Let 𝑁𝑒𝑡 define the total line export. Then the following equation is always valid:

𝑁𝑒𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛− 𝐿𝑜𝑎𝑑− 𝑌𝑠ℎ𝑢𝑛𝑡 * 𝑉 𝑜𝑙𝑡𝑎𝑔𝑒2

2.5. Record Formats 35



Interactive Power Flow

Fig. 2.5.6: Reactive Allocation Scheme

36 Chapter 2. Contents



Interactive Power Flow

The equation is complex; the real and reactive components are balanced separately. The separate equations are:

𝑃𝑛𝑒𝑡 = 𝑃𝐺𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑 −𝐺 * 𝑉 2

𝑄𝑛𝑒𝑡 = 𝑄𝐺𝑒𝑛 −𝑄𝑙𝑜𝑎𝑑 +𝐵 * 𝑉 2

The shunt admittance is

𝑌 =
1

𝑍
= 𝐺+ 𝑗𝐵

The equations above define the interrelationship between quantities and are valid for all bus types. The bus type
determines which equations are also constraints.

The preceding diagram illustrates the following priority scheme. In applying the equation for 𝑄, vars are allocated to
generation and variable shunt components on a priority basis. If 𝑄𝑛𝑒𝑡 is less than 𝑄𝑙𝑜𝑎𝑑 +𝑄𝑠ℎ𝑢𝑛𝑡 fixed, then vars are
allocated first to variable shunt reactors and then, if necessary, to reactive generation. If, on the other hand, 𝑄𝑛𝑒𝑡 is
higher than 𝑄𝑙𝑜𝑎𝑑 + 𝑄𝑠ℎ𝑢𝑛𝑡 fixed, then vars are allocated first to the variable shunt capacitors and then, if necessary,
to reactive generation. If the limits of reactive generation are exceeded, then unscheduled reactive is allocated.

2.5.8 AC Bus Data (B-blank)

Application

This bus subtype is passive in the sense that it cannot control the voltage of another bus. Its primary use is for modeling
load buses.

Bus Characteristics

Both real (𝑃 ) and reactive (𝑄) power are held constant throughout the entire solution. This applies to generators, load
and shunt devices (capacitors/reactors).

A specific amount of reactive generation can be requested. This can be accomplished by entering a zero (0) in the Q
MIN field and the desired amount of reactive generation in the Q SCHED field.

Since this bus normally has no voltage control, the voltage limits (V MAX, V MIN) serve two purposes.

• If the bus is remotely controlled by another bus (type BG or BX) or by an LTC transformer (which is not standard
but is accepted), the limits specify the range of acceptable voltage.

• For accounting purposes, these limits can flag undervoltage or overvoltage situations in the analysis reports.

It must be recognized that every bus has voltage limits, whether they are explicitly specified through the V MIN, V MAX
fields or implicitly specified through default global voltage limits. See Voltage Limits and Starting Voltages for details
on global limits.

Reactive limits are not allowed for this type of bus. If reactive limits are entered in the Q MAX and Q MIN fields, they
will be ignored. However, legitimate Q GEN can be entered if Q MIN is zero.

For this subtype, 𝑄𝑛𝑒𝑡 is constant; its Q-V characteristic is shown in format drawing below.

If this bus is controlled by an LTC transformer or by a BG or BX bus, a warning diagnostic will be issued to the effect
that remotely controlled buses are typically type BC or type BT and the controlled voltage is a single value, 𝑉𝑠𝑐ℎ𝑒𝑑 and
not a range 𝑉𝑚𝑖𝑛 < 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 < 𝑉𝑚𝑎𝑥.

2.5. Record Formats 37



Interactive Power Flow

Fig. 2.5.7: B-blank Subtype Format

Table 2.5.9: Column Description for B Bus Data
Column ID Field Format Description
1-2 yes A2 B - Generic load bus
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q SCHED in MVAR
53-57 no F5.0 Q MIN — Must be blank or zero for Q SCHED to apply
58-61 no F4.3 VMAX. If blank, then limits default to global limits as outlined in ??.
62-65 no F4.3 VMIN. If blank, then limits default to global limits as outlined in ??.
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

38 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.8: Q-V Curve for B-blank Subtype

2.5. Record Formats 39



Interactive Power Flow

2.5.9 AC Bus Data (BC)

Application

This bus type has its voltage maintained by a subtype BG bus.

Bus Characteristics

Both real (𝑃 ) and reactive (𝑄) power are held constant throughout the entire solution. This applies to generators, loads,
and shunt devices (capacitors/reactors).

A specific amount of reactive generation can be requested. This can be accomplished by entering a zero (0) in the Q
MIN field and the desired amount of reactive generation in the Q SCHED field.

Reactive constraints are not allowed for this type of bus. If reactive limits are entered in the Q MAX and Q MIN fields,
they will be ignored.

Since this bus type has its voltage maintained by a generator bus, a V HOLD entry is strongly recommended on the bus
record. However, if that field is blank, the global default limits apply, in effect, using VMAX for the VHOLD. See Voltage
Limits and Starting Voltages for details on global limits.

Fig. 2.5.9: BC Subtype Format

40 Chapter 2. Contents



Interactive Power Flow

Table 2.5.10: Column Description for BC Bus Data
Column ID Field Format Description
1-2 yes A2 BC - Voltage controlled by BG bus
3 no A1 Change code
4-6 no A3 Ownership
7-18 yes Bus name and base kV
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q SCHED in MVAR
53-57 no F5.0 Q MIN — Must be blank or zero for Q SCHED to apply
58-61 no F4.3 V HOLD in per unit
62-65 no F4.3 N/A
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

Fig. 2.5.10: Q-V Curve for BC Subtype

2.5. Record Formats 41



Interactive Power Flow

2.5.10 AC Bus Data (BE)

Application

This subtype is used to hold the bus voltage to a specified value, regardless of the amount of reactive required.

Bus Characteristics

Voltage magnitude (𝑉 ) is held constant. Real (𝑃 ) power is held constant. This applies to generators, load, and shunt
devices. Reactive (Q) load is held constant for this bus type.

Reactive (𝑄) shunt is variable. The amount of shunt reactance added by the program can vary from 0 to Qshunt,
depending upon the amount needed to maintain desired bus voltage.

Reactive (𝑄) generation is variable.

Reactive constraints are allowed for this bus type. These quantities are entered in the Q MAX and Q MIN fields. If
reactive constraints are imposed, “unscheduled reactive” may be added by the program to hold the bus voltage.

A specific amount of reactive generation (Q SCHED) cannot be requested.

Since this bus type maintains its own voltage, a V HOLD entry is required on the record. The voltage is held fixed at
this value, regardless of the amount of reactive required. Note that V HOLD is not required for type “M” changes.

Fig. 2.5.11: BE Subtype Format

42 Chapter 2. Contents



Interactive Power Flow

Table 2.5.11: Column Description for BE Bus Data
Column ID Field Format Description
1-2 yes A2 BE - Constant voltage bus
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q MAX in MVAR
53-57 no F5.0 Q MIN in MVAR
58-61 no F4.3 V HOLD in per unit
62-65 no F4.3 N/A
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

Fig. 2.5.12: Q-V Curve for BE Subtype

2.5. Record Formats 43



Interactive Power Flow

2.5.11 AC Bus Data (BF)

This is a special purpose bus type used to assist the Newton-Raphson solution convergence. The BF type behaves as a
BE bus until the P_net converges to the Newton-Raphson solution. Then it functions as a B- type. This feature is useful
to bias a solution toward a more feasible voltage.

2.5.12 AC Bus Data (BG)

Application

This bus type is typically used to maintain the voltage at a remote bus (subtype BC).

This subtype may also be used for local control. For this application, the bus would maintain its own voltage. In this
case, it would differ from a BQ bus only by the voltage limit. BG has 𝑉𝑚𝑖𝑛𝑉𝑚𝑎𝑥; BQ has 𝑉ℎ𝑜𝑙𝑑.

Bus Characteristics

Real (𝑃 ) power is held constant. This applies to generators, load and shunt devices. However, it is not required to have
generation (P GEN) at this bus.

Reactive (𝑄) load and shunt are held constant for this bus type.

Reactive (𝑄) generation is variable.

This bus type requires reactive limits to be entered in the Q MAX and Q MIN fields. The reactive limits on the subtype BG
bus are used to maintain a specified voltage at a remote bus. If the remote bus voltage cannot be held with the available
BG bus reactance, voltage control stops at either Q MAX or Q MIN.

A specific amount of reactive generation (Q SCHED) cannot be requested.

This bus type uses V MAX and V MIN limits. If these fields are blank, global voltages are used as defaults. The voltage
on the BG bus must be between V MIN and V MAX when controlling a remote bus. If not, remote voltage control will
be disabled.

If this bus type is being used to control another bus, the REMOTE BUS and % VARS SUPPLIED fields should be used.The
REMOTE BUSmay not be the system swing bus or another subtype BG bus. The % VARS SUPPLIED field is used to allow
the voltage control of a remote bus, to be distributed among more than one BG bus.

If the % VARS SUPPLIED is left blank, the program computes these values based upon the percent of total VARS
supplied by the bus.

If the bus is controlling itself, its own name must appear in the REMOTE BUS field.

44 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.13: BG Subtype Format

Table 2.5.12: Column Description for BG Bus Data
Column ID Field Format Description
1-2 yes A2 BG - Maintains the voltage of a remote bus
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q MAX in MVAR
53-57 no F5.0 Q MIN — Must be blank or zero for Q SCHED to apply
58-61 no F4.3 V MAX
62-65 no F4.3 V MIN
66-77 no A8,F4.0 Controlled bus name and base kV (self or remote)
78-80 no F3.0 Percent of vars supplied for remote bus voltage control.

2.5. Record Formats 45



Interactive Power Flow

Fig. 2.5.14: Q-V Curve for BG Subtype

46 Chapter 2. Contents



Interactive Power Flow

2.5.13 AC Bus Data (BQ)

Application

This subtype is used to hold the bus voltage to a specified value within reactive limits.

Bus Characteristics

Real power (P GEN) is held constant. This applies to generators, load, and shunt devices.

Reactive load (Q MVAR) load is held constant for this bus type.

Reactive (SHUNT MVAR) shunt is variable. The amount of shunt reactance added by the program can vary from 0 to
Qshunt, depending on the amount needed to maintain desired bus voltage.

Reactive (𝑄) generation is variable.

This bus type requires adjustable reactive generation or shunt to perform as intended. If neither is available, the bus
functions as a bus type B-blank.

A specific amount of reactive generation (Q SCHED) cannot be requested.

Since this bus type is attempting to maintain its own voltage, a V HOLD entry is required on the record. If the voltage
cannot be held at the desired level, using the reactive capability of the bus, the desired voltage will be violated and
reactive will be held at the Q MAX or Q MIN limit. Note that V HOLD is not required for modifications.

Fig. 2.5.15: BQ Subtype Format

Note: For a type BQ bus to be viable, it needs a source of adjustable reactive. This may be the B_shunt field or the Q
MIN - Q MAX fields. The necessary reactive component may be provided on the bus record, or it may be provided on an
accompanying continuation (+) bus record or both

2.5. Record Formats 47



Interactive Power Flow

Table 2.5.13: Column Description for BQ Bus Data
Column ID Field Format Description
1-2 yes A2 BQ - Constant voltage within Q limits
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q MAX
53-57 no F5.0 Q MIN
58-61 no F4.3 V HOLD
62-65 no F4.3 N/A
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

2.5.14 AC Bus Data (BS)

Application

This subtype designates the system swing or slack bus. The generators at the swing bus supply the difference between
the specified power flowing into the system at the other buses and the total system output plus losses. Thus, real and
reactive power are determined as part of the solution for this subtype.

Every power flow case must have a minimum of one swing bus. In addition, each isolated AC system must have its
own swing bus. The maximum numbers of swing buses allowed for a single power flow case is ten.

Bus Characteristics

Real (𝑃 ) load is held constant. Both real (𝑃 ) generation and shunt are variable. The P GEN field is updated to the base
case value. The P MAX field is used for reporting purposes only.

Reactive (𝑄) load is held constant for this bus type. Reactive (𝑄) shunt is variable. The amount of shunt reactance
added by the program can vary from 0 to Qshunt, depending on the amount needed to maintain desired bus voltage.

Reactive (𝑄) generation is variable.

Reactive constraints are allowed for this bus type. These quantities are entered in the Q MAX and Q MIN fields. If
reactive constraints are imposed, “unscheduled reactive” may be added by the program to maintain the bus voltage.

A specific amount of reactive generation can be requested, in place of reactive constraints. This is implemented by
entering a 0 in the Q MIN field and the desired amount of reactive generation in the Q SCHED field. Again, “unscheduled
reactive” may be added by the program to maintain the bus voltage.

The BS bus record requires an entry in the V HOLD field.

The V MIN field is used to specify the angle of the swing bus for this application. It should be noted that an implied
decimal point exists between columns 64 and 65. For example, an angle of 3.7 degrees can be specified with a 3 in
column 64 and a 7 in column 65.

48 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.16: Q-V Curve for BQ Subtype

Fig. 2.5.17: BS Subtype Format

2.5. Record Formats 49



Interactive Power Flow

Table 2.5.14: Column Description for BS Bus Data
Column ID Field Format Description
1-2 yes A2 BS - System swing or slack bus
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q MAX
53-57 no F5.0 Q MIN
58-61 no F4.3 V HOLD
62-65 no F4.1 Voltage angle (blank implies zero degrees)
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

Fig. 2.5.18: Q-V Curve for BS Subtype

50 Chapter 2. Contents



Interactive Power Flow

2.5.15 AC Bus Data (BT)

Application

This subtype has its voltage maintained by an Load Tap Change (LTC) transformer.

Bus Characteristics

Both real (𝑃 ) and reactive (𝑄) power are held constant throughout the entire solution. This applies to generators, load,
and shunt devices (capacitors/reactors).

A specific amount of reactive generation can be requested. This can be accomplished by entering a zero (0) or blank
in the Q MIN field and the desired amount of reactive generation in the Q SCHED field.

Reactive constraints are not allowed for this type of bus. If reactive limits are entered in the Q MAX and Q MIN fields,
they will be ignored.

Since this bus type has its voltage maintained by an LTC transformer, a V HOLD entry is required. This subtype requires
an additional record, the R (Regulating Transformer) record.

2.5. Record Formats 51



Interactive Power Flow

Table 2.5.15: Column Description for BT Bus Data
Column ID Field Format Description
1-2 yes A2 BT - LTC transformer controlled bus
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q SCHED
53-57 no F5.0 QMIN must be blank or zero for QSCHED to apply
58-61 no F4.3 V HOLD
62-65 no F4.1 N/A
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

2.5.16 AC Bus Data (BV)

Application

This subtype maintains the bus’s net reactive (𝑄𝑛𝑒𝑡) power flow as long as the bus voltage does not violate the user
specified voltage range.

Bus Characteristics

Real (𝑃 ) power is held constant throughout the entire solution. This applies to generators, load, and shunt devices.

Reactive (𝑄) load and shunt are also held constant.

Reactive (𝑄) generation is normally constant. Although this bus type actually has infinitely adjustable reactive limits,
the program attempts to hold Qnet constant. However, if either of the voltage limits are violated, 𝑄𝑛𝑒𝑡 is changed to
hold that limit. If any additional reactive generation is added by the program, it will be referred to as “unscheduled
reactive” in the program output file.

A specific amount of reactive generation can be requested. This is accomplished by entering a zero (0) in the Q MIN
field and the desired amount of reactive generation in the Q SCHED field.

Reactive constraints are not allowed for this type of bus. If reactive limits are entered in the Q MAX and Q MIN fields,
they will be ignored.

The BV bus record requires entries in the V MAX and V MIN fields. The program’s solution voltage will be within
the range of V MAX to V MIN, regardless of how much reactive is required. If voltage attempts to rise above V MAX,
additional negative reactive (−𝑄𝑠ℎ𝑢𝑛𝑡) is added to bring the voltage down to V MAX. Also, if the voltage is below V
MIN, additional reactive (+𝑄𝑠ℎ𝑢𝑛𝑡) is added until the bus voltage has reached V MIN.

52 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.19: BV Subtype Format

Table 2.5.16: Column Description for BV Bus Data
Column ID Field Format Description
1-2 yes A2 BV - Constant 𝑄 within 𝑉 limits
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q SCHED or QMA
53-57 no F5.0 Q MIN
58-61 no F4.3 V MAX in per unit
62-65 no F4.1 V MIN in per unit
66-77 no A8,F4.0 N/A
78-80 no F3.0 N/A

2.5.17 AC Bus Data (BX)

Application

This subtype may be used for a truer representation of capacitors/reactors that are switched in discrete blocks to control
bus voltages. The BX subtype is most often used for local voltage control. Here, the bus would maintain its own voltage
within a specified range of voltages. It is recommended, but is not mandatory, that for local control the bus name
should be repeated in the REMOTE field. This subtype may also be used for remote control, where the BX bus maintains
a specified voltage level at another bus. Provide the remote bus name.

2.5. Record Formats 53



Interactive Power Flow

Fig. 2.5.20: Q-V Curve for BV Subtype

54 Chapter 2. Contents



Interactive Power Flow

Bus Characteristics

The real (𝐺) and reactive (𝐵) shunt fields hold the base case values of discrete reactance. These values may be updated
by the solution. Real (𝑃 ) power is held constant. This applies to generators and loads.

Reactive (𝑄) load is held constant. Reactive (𝑄) generation is variable.

Reactive constraints are allowed for this bus type. These quantities are entered in the Q MAX and Q MIN fields. A
specific amount of reactive generation (Q SCHED) is available only if QMAX = QMIN. This bus type uses V MAX and V
MIN limits. If these fields are blank, global voltages are used as defaults. The voltage on the BG bus must be between V
MIN and V MAX when controlling a remote bus. If not, remote voltage control will be disabled.

Reactive shunt (+/ − 𝑄) is added in discrete blocks to maintain the desired bus voltage. The capacitive/inductive
blocks of reactance are identified on the X (switched reactance) record. It should be noted that actual convergence
is implemented with continuous susceptance control, then discretization occurs automatically. This means that exact
voltage control may not be possible.

It should be noted that the program will attempt to select a discrete reactive step, which yields the highest voltage within
the specified limits, so that losses can be minimized. This is the default (BPA) value, for the third level >MISC_CNTRL
Program Control Statement, X_BUS option.

Fig. 2.5.21: BX Subtype Format

Note: The value on the 𝐵𝑠ℎ𝑢𝑛𝑡 field dictates the initial value

2.5. Record Formats 55



Interactive Power Flow

Table 2.5.17: Column Description for BX Bus Data
Column ID Field Format Description
1-2 yes A2 BX — Attempts constant V using switched Q
3 no A1 Change code
4-6 no A3 Ownership
7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no A2 Zone
21-25 no F5.0 Load MW
26-30 no F5.0 Load MVAR
31-34 no F4.0 Shunt Admittance Load in MW at base kV
35-38 no F4.0 Shunt Admittance in MVAR
39-42 no F4.0 P MAX
43-47 no F5.0 P GEN
48-52 no F5.0 Q SCHED or QMAX
53-57 no F5.0 Q MIN
58-61 no F4.3 V MAX in per unit
62-65 no F4.1 V MIN in per unit
66-77 no A8,F4.0 Controlled bus name and kV (self or remote). If blank, self is assumed.
78-80 no F3.0 N/A

Fig. 2.5.22: Q-V Curve for BX Subtype

56 Chapter 2. Contents



Interactive Power Flow

2.5.18 Two-Terminal DC Bus (BD)

This record defines a DC bus to be used in conjunction with a two-terminal DC line. It is subtype D and interpreted
with a different format from AC bus data records. No injections of any kind are permitted. The data contained on the
record defines the rectifier or inverter valve characteristics. During the solution, the injection from the converter into
the DC line is replaced with an equivalent but fictitious injection, and the DC line is removed entirely from the AC
solution.

The DC model determines the initial AC injections and voltage magnitude on the converter bus. If these conditions can
be held in the AC solution, no further DC adjustments occur. If the conditions cannot be held, the firing or extinction
angles are readjusted to interface the current voltage magnitude on the converter buses while observing the scheduled
DC power in the DC line. These adjustments will change the equivalent AC injections and will require a new AC
solution.

The DC bus must be connected to a single AC bus through a commutating transformer. The commutating bus name
is required, and the commutating transformer must be an LTC. All reactive sources supplying the harmonic filter must
be connected on the commutating bus; it is not restricted in subtype.

Data for the inverter and rectifier buses are identical. Identification of each is by the DC line data record which compares
the sign of the DC power flow with the DC terminal buses. The rectifier and inverter buses may be interchanging the
sign of the scheduled DC power.

Fig. 2.5.23: BD Subtype Format

2.5. Record Formats 57



Interactive Power Flow

Table 2.5.18: Column Description for BD Bus Data
Col-
umn

ID
Field

For-
mat

Description

1-2 yes A2 BD — Code for direct current (DC) bus, terminal of a DC line.
3 no A1 Change code — see System Changes
4-6 no A3 Ownership code
7-
14

yes A8 Bus name

15-
18

yes F4.0 Base kV

19-
20

no A2 Zone

24-
25

no I2 Bridges per ckt. — Number of valves in series per circuit.

26-
30

no F5.1 Smoothing reactor (mh) — Inductance of the smoothing reactor in millihenries.

31-
35

no F5.1 Rectifier operation (alpha min.) — Minimum firing angle in degrees as a rectifier.

36-
40

no F5.1 Inverter operation (alpha stop) — Maximum firing angle in degrees. Both inverter and rectifier
buses have alpha. However, only the minimum alpha on the rectifier bus is used in the power
flow. The remaining valves are required for the transient stability program in event of power
reversals in the dc line.

41-
45

no F5.1 Valve drop (volts) — Valve voltage drop per bridge in volts.

46-
50

no F5.1 Bridge current rating (amps) — Maximum bridge current in amperes.

51-
62

no A8,F4.0Commutating bus — Alphanumeric name in columns 51-58 and base kV in columns 59-62.
This is on the AC system side of the commutating transformer bank

2.5.19 Multi-Terminal DC Bus (BM)

The multi-terminal DC system introduces flexibility in network configuration which is already present in the AC system.
This DC scheme is a general extension of the two-terminal DC scheme. The converter modeling itself is unchanged,
but the DC converter control is more flexible. All N-node DC systems must have N DC constraints. These are either
converter DC voltage or DC power. At least one DC voltage constraint must be specified. It is permissible to constrain
both DC voltage and power on the same node. The choice of voltage or power constraints on each converter is flexible.

It is possible to define a DC tap node. This node is passive only and is not a converter. Nevertheless, it implicitly
constrains zero power on itself.

The distinction between rectifiers and inverters is very simple. Any converter’s mode of operation is based upon the
sign of the converter-calculated output power. The converter output power is positive for rectifiers and negative for
inverters. Obviously, a DC tap node will have zero power.

The range of converter angle adjustments is determined by the converters’s mode of operation.

𝛼𝑚𝑖𝑛 ≤ 𝛼𝑠𝑡𝑜𝑝

𝛾0 ≤ 𝛼𝑠𝑡𝑜𝑝

If an excessive number of DC constraints are specified, some superfluous power constraints will be omitted. If the DC
system is unable to maintain the dc voltage constraints, the DC voltages will be changed to values realized by the actual
commutator bus voltage and the converter angle limits.

58 Chapter 2. Contents



Interactive Power Flow

It is permissible to model two-terminal DC networks with the multi-terminal type M formats. However, it is not permis-
sible to mix two-terminal type D data with multi-terminal type M data on the same DC circuit. The two different types
of DC data may coexist in the same case, but when both types are present, they must pertain to separate DC circuits.

Fig. 2.5.24: BM Subtype Format

2.5. Record Formats 59



Interactive Power Flow

Table 2.5.19: Column Description for BM Bus Data
Col-
umn

ID
Field

For-
mat

Description

1-2 yes A2 BM - Code for multi-terminal dc bus
3 no A1 Change code - see System Changes
4-6 no A3 Ownership code
7-
14ac

yes A8 Bus name

15-
18

yes F4.0 Base kV

19-
20

no A2 Zone code

24-
25

no I2 Number of bridges per DC circuit - (Number of converters serially connected)

26-
30

no F5.1 Smoothing reactor inductance in mh

31-
35

no F5.1 Minimum ignition delay angle (𝛼𝑚𝑖𝑛) in degrees

36-
40

no F5.1 Maximum ignition delay angle (𝛼𝑠𝑡𝑜𝑝) in degrees

41-
45

no F5.1 Converter valve drop per bridge in volts

46-
50

no F5.1 Maximum converter current in amps

51-
62

no A8,F4.0Commutator bus name and base kV of commutator.

63b no A1 Converter code (R1): R — Normal operation as a rectifier I — Normal operation as an Inverter
M — Normal operation as an inverter with current margin Blank — A passive DC tap

64-
66

no F3.1 Normal ignition delay angle (𝛼𝑁 ) if a rectifier, or normal extinction angle (𝛾𝑁 ) if an inverter,
in degrees

67-
69

no F3.1 Minimum ignition angle (𝛼𝑚𝑖𝑛) if a rectifier, or minimum extinction angle (𝛾0) in degrees if
an inverter

70-
75c

no F6.1 Scheduled net converter DC output power in MW

76-
80d

no F5.1 Scheduled converter DC voltage in kV

a. A passive DC node has columns 24-80 all blank

b. If the actual converter operation does not correspond to the converter code, subsequent swing studies will abort.

c. If the DC power or voltage is not constrained, leave the corresponding field blank or enter a zero value.

d. If the DC power or voltage is not constrained, leave the corresponding field blank or enter a zero value.

60 Chapter 2. Contents



Interactive Power Flow

2.5.20 Delete Buses by Area (DA)

This command deletes all buses that reside in the area named in columns 4-13. Place a DA in the first two columns.
Format of the input is shown below. This is a change record and must be preceded with a /CHANGES command or
otherwise reside in a change set.

Fig. 2.5.25: Area Delete Input Format

Table 2.5.20: Column Description for Delete Buses by Area Format
Column ID Field Format Content
1-2 yes A2 Record type - DA
4-13 yes A10 Area Name

2.5.21 Delete Buses by Zone (DZ)

This command deletes all buses that reside in the zone named in columns 4-5. Place a DZ in the first two columns.
Format for input is shown below. This is a change record and must be preceded with a /CHANGES command or otherwise
reside in a change set.

Table 2.5.21: Column Description for Delete Buses by Zone Format
Column ID Field Format Content
1-2 yes A2 Record type - DZ
4-5 yes A2 Zone Name

2.5. Record Formats 61



Interactive Power Flow

Fig. 2.5.26: Zone Delete Input Format

2.5.22 Equivalent Transmission Line Branch (E)

This record differs from the type L record by allowing for an asymmetrical pi. Two additional fields of data must describe
the second leg to ground admittances. The additional fields occupy the columns which are used for line description
and mileage on the L record. In all other aspects, the description of the L branch pertains also to the type E branch.

This branch representation is useful for modeling transmission line components that do not have evenly distributed
parameters, such as lines with shunt capacitors and line/transformer combinations.

Following is a sample of a coding sheet for equivalent branch data along with descriptions of its various columns.

62 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.27: Equivalent Branch Data Input Format

2.5. Record Formats 63



Interactive Power Flow

Table 2.5.22: Column Description for Equivalent Branch Data
Column ID Field Format Description
1 yes A1 Record type - E for equiv-

alent
2 no A1 Blank
3 no A1 Change code - see System

Changes
4-6 no A3 Ownership code - Line

and transformer losses
will be summarized by
ownership at end of final
area summary.

7-14 yes A8 Bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 Tie line metering point

flag for area tie lines. 1
in column 19 provides for
metering at bus name 1 2
in column 19 provides for
metering at bus name 2
Blank allows for program
assumption as follows:
Metering point will be
identified (1) by location
where line ownership dif-
fers from bus ownership or
(2) when buses at end of
tie line have same owner-
ship, then the bus Name 1
will be the metering point.

20-27 yes A8 Bus name 2
29-31 yes F4.0 Base kV 2
32 yes A1 Circuit identification
33 yes I1 Section number for mak-

ing an equivalent for series
elements. (numeric)

34-37 no F4.0 Total ampere rating for all
lines represented by this
record.

38 no I1 Number of parallel cir-
cuits represented by this
record, for information
purposes only. The equiv-
alent impedance is entered
in columns 39-74 for lines
with unequal legs.

39-50 no 2F6.5 Per unit R and X on base
kV and base MVA.

51-62 no 2F6.5 Per unit G and B at bus
name 1 end of line.

63-74 no 2F6.5 Per unit G and B at bus
name 2 end of line.

75-77 no A1,I2
Energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits
of year

78-80 no A1,I2
De-energization Data -
MYY

M =
{0,1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits
of year

81-84 no F4.0 Thermal ratings in Amps
85-88 no F4.0 Bottleneck rating in Amps

64 Chapter 2. Contents



Interactive Power Flow

2.5.23 Scheduled Area Intertie (I)

Intertie is the power flowing between two areas. Scheduled Area Intertie are the values scheduled on the area bubble
diagrams from which the net area interchange export is derived. The net export is simply the sum of all individual
interties emanating from each area. Intertie I records permit the net area interchange schedules to be defined directly
from the scheduled intertie quantities. New net area export is computed from these values; they override any scheduled
net interchange on the AC control records.

A coding sheet and column descriptions follow.

Fig. 2.5.28: Area Intertie Input Format

Table 2.5.23: Column Description for Scheduled Area Intertie
Col-
umn

ID
Field

For-
mat

Description

1 yes A1 Record type - I
3 no A1 Change code - see System Changes
4-13 yes A10 Area 1
15-24 yes A10 Area 2
27-34 no F8.0 Area 1 - Area 2 export in MW. (Import will be negative.) Blanks are interpreted as

0.0 scheduled export

“Scheduled” is actually misapplied because no direct controls are available to regulate the intertie flow between two
areas. Net area export can be controlled using area slack buses, but not interarea export, which requires additional
but unavailable intertie slack buses. Therefore, without direct control of intertie, the scheduled flow can never be
maintained. The term circulating flow is introduced to reconcile the discrepancy between the scheduled and the actual
flow:

Circulating flow = Scheduled flow - Actual flow

Circulating flow is also a misnomer because it implies wasteful circulating power eddies within a network. If any
circulating flow exists, it is introduced deliberately with the application of transformers (MVAR) or phase shifters
(MW). Otherwise the flows will always be distributed optimally to minimize losses by simply following Kirchoff’s
voltage and current laws. The circulating flows are calculated in the interchange output.

2.5. Record Formats 65



Interactive Power Flow

2.5.24 Balanced Transmission Line Branch (L)

This record defines the identification and the electrical characteristics of a line, section of a line or series capacitor.
The model assumes the form of a lumped, symmetric pi. The following identifies a branch item:

• Line type (L in this case).

• Bus 1 (name and base kV) and bus 2 (name and base kV).

• Circuit identification if more than one parallel branch exits.

• Section number (if appropriate).

Lines can be divided into equivalent series elements identified with unique section numbers. Section numbers need
not be consecutive, but must be unique. Sections are presumed to be physically ordered such that the lowest numbered
section is connected to bus 1 and the highest is connected to bus 2.

Fig. 2.5.29: Balanced Transmission Line Branch

The entries in RATING and MILES are used in output to flag overloaded lines and produce a MW-Miles listing by
ownership and voltage class if requested.

The metering point (1 or 2) is used when the line spans two areas which are controlled. A simple comparison of the
zones for each terminal bus will determine if that branch is a tie line. The metering point field determines which end
of a line will represent the area boundary. The line losses are assigned to the other area. The entry in the No. of
CKTS field (column 38) identifies the number of parallel branches represented by the branch item. A blank or zero is
interpreted as one. This is for information purposes only.

The DATE IN and DATE OUT columns specify the expected energization and de-energization dates. These are used for
descriptive purposes

To simulate a bus tie or bus sectionalizing breaker normally closed, a line impedance of 𝑋 = 0.00020𝑝.𝑢. is used.
This allows two sections to be connected or disconnected by adding or deleting this branch.

A sample coding sheet with column explanations follows.

66 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.30: Transmission Line Data Input Format

2.5. Record Formats 67



Interactive Power Flow

Table 2.5.24: Column Description for Transmission Line Data
Column ID Field Format Description
1 yes A1 Record type - L for branch
2 no A1 Blank
3 no A1 Change code - see System

Changes
4-6 no A3 Ownership code - Line

and transformer losses
will be summarized by
ownership at end of final
area summary.

7-14 yes A8 Bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 The line metering point for

area tie lines. 1 in col-
umn 19 provides for me-
tering at bus name 1 end.
2 in column 19 provides
for metering at bus name 2
end. Blank allows for pro-
gram assumption as fol-
lows:
Metering point will be
identified (1) by location
where line ownership dif-
fers from bus ownership or
(2) when buses at end of
tie line have same owner-
ship, then the bus name 1
will be the metering point.

20-27 yes A8 Bus name 2
29-31 yes F4.0 Base kV 2
32 no A1 Circuit identification if

more than one parallel
branch exists.

33 no I1 Section number for mak-
ing an equivalent for series
elements (numeric). Pro-
gram assembles series el-
ements in numerical order
of section numbers (need
not be consecutive).

34-37 no F4.0 Total ampere rating for all
lines.

38 no I1 Number of parallel cir-
cuits represented by this
record, for information
purposes only. The equiv-
alent impedance is entered
in columns 39-62 for lines
with equal legs.

39-44 no F6.5 Per unit R at base kV
and base MVA (normally
100).

45-50 no F6.5 Per unit X at base kV
and base MVA (normally
100).

51-56 no F6.5 Per unit G_pi/2 at base kV
and MVA (normally 100).
This format is for balanced
lines when Y_pi sending
equals Y_pi receiving and
only Y_pi needs to be in-
put.

57-62 no F6.5 Per unit B_pi/2 at base kV
and MVA (normally 100).
This format is for balanced
lines when Y_pi sending
equals Y_pi receiving and
only Y_pi needs to be in-
put.

63-66 no F4.1 Circuit miles of line or
section.

67-74 no A8 Descriptive data (al-
phanumeric, for example
6-wire).

75-77 no A1,I2 Energization Date - MYY
M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two
digits of year

78-80 no A1,I2 De-energization Data -
MYY

M =
{0,1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two
digits of year

81-84 no F4.0 Thermal rating in Amps
85-88 no F4.0 Bottleneck rating in Amps

68 Chapter 2. Contents



Interactive Power Flow

2.5.25 Two-Terminal DC Line (LD)

This record is used in conjunction with Two-Terminal DC Bus (BD) records; collectively they define the dc model. The
dc line data contains pertinent information describing the electrical characteristics of the line, the scheduled dc power
and voltage, and the initial firing (ignition) and extinction angles.

Distinction between the inverter and rectifier buses is made with the DC line record using the sign of the scheduled DC
power. The direction of power flow is always from rectifier to inverter, and the criteria assumes positive values from
bus 1 to bus 2 on the record. Thus, simple modifications in the line data permit power reversals to be modeled with a
minimum of data changes. A sample DC line data coding form and column descriptions follow. See figure and table
below.

Fig. 2.5.31: DC Line Data Input Format

2.5. Record Formats 69



Interactive Power Flow

Table 2.5.25: Column Description for DC Line Data
ColumnsID

Field
For-
mat

Descriptions

1-2 yes A2 Record code - LD for DC line
3 no A1 Change code - see System Changes
4-6 no A3 Ownership code, same as on Bus record
7-14 yes A8 Converter bus name 1 (conventionally the rectifier)
15-18 yes F4.0 Base kV 1
20-27 yes A8 Converter bus name 2 (conventionally the inverter)
29-31 yes F4.0 Base kV 2
34-37 no F4.0 I rating (amps) - Maximum DC line current in amperes.
38-43 no F6.2 R (ohms) - DC line resistance, ohms.
44-49 no F6.2 L (mH) - DC line inductance, millihenries
50-55 no F6.2 C (uF) - DC line capacitance, microfarads.
56 no A1 Inverter or rectifier control - Enter R for rectifier control or I for inverter control (point of

DC line in which scheduled power is measured).
57-61 no F5.1 Schedule DC power (MW) - Scheduled DC power in megawatts from converter 1 to 2

metered at the end indicated by I or R in column 56.
62-66 no F5.1 Schedule DC line volts (kV) - at rectier end of DC line.
67-70 no F4.1 Rectier (𝛼𝑁 ) - Initial firing angle in degrees at rectifier.
71-74 no F4.1 Inverter (𝛾0) - Minimum margin angle in degrees at inverter.
75-78 no F4.0 Miles - Descriptive information only.
81-84 no F4.0 Thermal rating in Amps
85-88 no F4.0 Bottleneck rating in Amps

2.5.26 Multiterminal DC Line (LM)

This data is used in conjunction with Multi-Terminal DC Bus (BM) records. The line data together with the DC bus
data define the DC converter terminals and interconnecting DC lines for a multiterminal DC network. This line data
contains only the fields for some of the converter quantities which were included on the two-terminal DC format.

Two-terminal (type LD) and multiterminal (type LM) data may coexist within the same base, but cannot coexist on the
same DC circuit.

The following shows the multiterminal DC line data coding form format. It is followed by explanations of its various
columns.

70 Chapter 2. Contents



Interactive Power Flow

2.5. Record Formats 71



Interactive Power Flow

Table 2.5.26: Column Description for Multiterminal DC Line Type LM
Column ID Field Format Description
1-2 yes A2 Record Code - LM for mul-

titerminal DC line
3 no A1 Change code - see System

Changes
4-6 no A3 Ownership code, same as

on bus data record
7-14 yes A8 DC bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 Tie line metering point for

area tie lines. 1 in col-
umn 19 provides for me-
tering at bus name 1 end.
2 in column 19 provides
for metering at bus name 2
end. Blank allows for pro-
gram assumption as fol-
lows:
Metering point will be
identified (1) by location
where line ownership dif-
fers from bus ownership or
(2) when buses at end of
tie line have same owner-
ship, then the bus name 1
will be the metering point

20-27 yes A8 DC bus name 2
29-31 yes F4.0 Base kV 2
34-37 no F4.0 I Rating (Amps) - Maxi-

mum DC line current in
amperes

38-43 no F6.2 R (Ohms) - DC line resis-
tance in ohms

44-49 no F6.2 L (mH) - DC line induc-
tance in millihenries

50-55 no F6.2 C (uF) - DC line capaci-
tance in microfarads

71-74 no F4.0 Miles - Descriptive infor-
mation only

75-77 no A1,I2
Energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits
of year

78-80 no A1,I2
De-energization Data -
MYY

M =
{0,1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits
of year

72 Chapter 2. Contents



Interactive Power Flow

2.5.27 Factor Change (PO, PZ, PN, PA, PB, PC, PD)

A specialized change record with a P in column 1 enables the loads and generation for all or part of the network to be
changed on a multiplying factor basis. These records follow a /CHANGES statement and any Z records.

Note: These change record types were formerly called “Percentage Changes.” This is a change record and must be
preceded with a /CHANGES command or otherwise reside in a change set.

Factor changes are performed before any other bus changes are made; therefore, any subsequent bus changes will be
unaffected by factor changes. Separate fields permit both active and reactive generation and the active and reactive load
to be changed at independent factor. The formula is:

𝑁𝐸𝑊𝐼𝑁𝐽𝐸𝐶𝑇𝐼𝑂𝑁 = 𝑂𝐿𝐷𝐼𝑁𝐽𝐸𝐶𝑇𝐼𝑂𝑁 * (𝐹𝐴𝐶𝑇𝑂𝑅)

A blank or 1.0 factor retains the present value of the injection while a factor of 2.0 will double the present value.

There are separate factors for 𝑃 and 𝑄. If the 𝑄 factor is blank, it will default to the 𝑃 factor. For example, if only the
𝑃 is to be changed by 0.95 and the 𝑄 left alone, set the 𝑃 factor = .95 and 𝑄 factor = 1.0.

Six different subtypes are permitted. Different subtypes may be submitted together. (Their formats are shown on the
following pages.)

Subtype O Factor change by ownerships (20 maximum). All AC bus and continuation bus loads and gen-
eration with the given ownership will be changed by the specified factors.

Subtype Z Factor change by zones (20 maximum). All AC bus and continuation bus loads and generation
within the depicted zones will be changed by the specified factors.

Subtype N Factor change by zone on all nonindustrial loads and generation (20 maximum). All AC bus
and continuation bus data except +A, +F, +I or +P continuation bus data within the designated zones will
be changed by the specified factors. All zones may be changed with one record having a key zone 00
(zero-zero).

Subtype A Factor change on all loads and generation on all AC bus and continuation bus data (1 only).

Subtype B Factor change by ownerships (20 maximum). All constant impedance and constant current
distributed (+ A01, + *I, + *P) loads with the given ownership will be changed by the specified factor.

Subtype C Factor change by zones (20 maximum). All constant impedance and constant distributed loads
(+ A01, + *I, + *P) with the given zone will be changed by the specified factor.

Subtype D Factor change by zones (20 maximum). all non-industrial loads within the given zones and
optional ownership will be converted into constant impedance and constant current loads.

2.5. Record Formats 73



Interactive Power Flow

Fig. 2.5.32: Factor Changen by Ownerships

Fig. 2.5.33: Factor Change by Zones

74 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.34: Factor Change by Nonindustrial Loads

Fig. 2.5.35: Factor Change on All Loads and Generation

2.5. Record Formats 75



Interactive Power Flow

Fig. 2.5.36: Factor Change by Ownerships of Constant Current and Impeadance Loads

Fig. 2.5.37: Factor Change by Zones of Constant Current and Impedance Loads

Fig. 2.5.38: Factor Change by Nonindustrial Loads of Constant Current and Impedance Loads

76 Chapter 2. Contents



Interactive Power Flow

Table 2.5.27: Column Description of Factor Change Record
Column Format Description
1 yes A1 Record type - P factor

change (P represents its
former name Percentage
Changes)

2 yes A1
Subtype

O for ownerships
Z for all loads in
selected zones N for
nonindustrial loads
in selected zones
A for all loads and
generatives B for
constant current and
constant impedance

loads by
owner-
ship

C for constant
current and
constant
impedance

loads by zones

10-14 no F5.0 P factor (decimal fraction)
for load

16-20 no F5.0 Q factor (decimal fraction)
for load

22-26 no F5.0 P factor (decimal fraction)
for generation or constant
impedance loads

28-32 no F5.0 Q factor (decimal fraction)
for generation or constant
impedance loads

Subtypes O and B - record
4-6 yes A3 Owner code
35-80 no (A2,1X) Optional list of zone

codes separated by single
blanks. Change will be
restricted to these listed
zones. If no list, all
zones are assumed. Note:
Subtype C is restricted
to the following types
of continuation buses:
+A01, +A02, *P, *I.

Subtypes Z, C, and N
4-5 yes A2 Zone code
35-80 no (A3,1X) Optional list of ownership

codes separated by single
blanks. Change will be
restricted to these listed
owners, if no list, all own-
ers are assumed. Note:
Subtype C is restricted
to the following types of
continuation buses: +A01,
+A02, *P, *I.

2.5. Record Formats 77



Interactive Power Flow

2.5.28 Reactive Capability Curves (QP, QX, QN)

Three records are required to define a curve: QP, QX, and QN. They may appear anywhere in the input stream although
they normally are put immediately after the bus record to which the curve applies. Each curve applies only to the bus
named.

Description

The generator capability curve model is a composite of two representations of a synchronous machine capability curve.
The first model consists of a set of 1-14 points depicting a piece-wise linear representation of the Q-P characteristics;
the second model consists of an optional, constant MVA representation.

As shown in the figure below, the generator capability curve model consists of a series of 1-15 points on the P-Q
diagram and a constant MVA secant. Each point is defined by specifying a value for 𝑃 followed by values for 𝑄𝑚𝑎𝑥

and 𝑄𝑚𝑖𝑛. The constant MVA is specified with 𝑀𝑀𝑉𝐴 (Machine MVA), a leading powerfactor (positive reactive),
and a lagging powerfactor (negative reactive). If 𝑀𝑀𝑉𝐴 is zero, the reactive capability curve is specified exclusively
with 𝑃 , 𝑄𝑚𝑎𝑥, and 𝑄𝑚𝑖𝑛 points

If the optional constant MVA representation is invoked, it takes precedence over any (𝑃 , 𝑄𝑚𝑎𝑥, 𝑄𝑚𝑖𝑛) point. (Overlap
is determined by 𝑃𝑔𝑒𝑛.)

If the minimum absolute value for 𝑃 is less than the first entered value (𝑃1), then the model will set the values for
𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛 equal to 𝑄𝑚𝑎𝑥1 and 𝑄𝑚𝑖𝑛1. For any point 𝐴𝐵𝑆(𝑃𝑔𝑒𝑛) between 𝑃1 and 𝑀𝑀𝑉𝐴, the model will
linearly interpolate between the 𝑄 values for 𝑃𝑗 just greater than and 𝑃𝑗−1 just less than 𝐴𝐵𝑆(𝑃𝑔𝑒𝑛). 𝑃𝑔𝑒𝑛 greater
than 𝑀𝑀𝑉𝐴 generates a fatal data error.

Processing

Before solution of the case, each BE, BG, BQ, BX, and BS bus is checked to see if a PQ curve is to be used to set its Q
limits. If not, the 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 already stored are used, that is, those read from the bus record or calculated from
a prior solution. If a curve is active, the values calculated using it replace those formerly stored. Original input values
from the bus record are not saved.

78 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.39: Generator Capability Curve Model

2.5. Record Formats 79



Interactive Power Flow

Table 2.5.28: Column Description for Reactive Capability Curves
Column ID Field Format Description
1-2 yes A2

Record Code -
QP for Pgen values
(positive values
only) QX for Qmax
values (positive val-
ues) QN for Qmin
values (negative
values)

3 no A1
Change code - For QP
record only:

D = Delete curve
for this bus. M =
Change p.u. code or
activity flag. This
cannot be used to
alter curve data.

To change curve data, en-
ter a complete new set. It
is not necessary to delete
the curve first; new data
will replace the old. Col-
umn 3 must be blank.

4-5 no A2 Unit ID (for informational
purposes)

6 no A1
Activity flag For QP
record only:

Blank = Curve ac-
tive (default when
data is entered). * =
Inactivate curve. A
= Activate formerly
inactive curve.

7-14 yes A8 Bus name
15-18 yes F4.0 Base kV
19-20 no I2 Number of units. Total

used is number of units
times the values specified
( 𝑃𝑔𝑒𝑛, 𝑄𝑚𝑎𝑥, 𝑄𝑚𝑖𝑛 )

21-25 no F5.2 QP - Maximum MVA QX
- Positive (leading) power
factor for Qmax QN - Neg-
ative (lagging) power fac-
tor for Qmin

26-30 no F5.2 Maximum Pgen
(MW/unit). This is
an optional hard limit,
designating a maximum
operating limit.

31-120 no 15F6.2 Up to 15 values for Pgen,
Qmax , or Qmin depend-
ing on the card type. The
values for Pgen can be in
any order, but the related
Qmin, Qmax values must
correspond. Entries must
be in consecutive fields
with no blank entries be-
tween. Pgen (1) must be
0.0.

80 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.40: Reactive Capability Curve QP Record

2.5.29 Regulating Transformer (R, RV, RQ, RP, RN, RM)

This record gives a fixed transformer or phase shifter automatic regulating or control status, provided the proper LTC
options on the LTC control record are specified to activate these controls.

This record defines the range of adjustable taps or angles, identifies the adjustable tap side and specifies the desired
control and quantity to be held.

The variable tap side of the LTC transformer can be specified in column 19. It can also be determined by comparing the
tap range with the base kV at each terminal. If this fails to encompass either base kV, the variable tap side is assigned
to the alphabetically highest terminal.

The tap or angle specified on a T record determines the initial parameter setting. If this setting is not encompassed
by the LTC tap range, the R record is temporarily deactivated in the solution routine with diagnostic messages. The
default LTC control can also be enabled by the command:

/ SOLUTION
> MISC_CNTRL, ..., LTC=ON, ... (Full LTC control)

ON_NV (RP,RQ,RM,RN only)
(continues on next page)

2.5. Record Formats 81



Interactive Power Flow

(continued from previous page)

ON_NPS (R,RQ,RN only)
ON_DCONL(commutating LTC transformers on)
OFF

If an LTC transformer reaches a tap limit, the control is temporarily deactivated.

All regulating transformers have provision for either continuous or discrete tap positions. Discretization occurs auto-
matically after a continuous solution is formed.

Several subtypes are available:

Subtype Blank or Subtype V This specifies LTC voltage control on either of the terminal buses. The con-
trolled voltage is entered on the appropriate bus record. The terminal being controlled may be an subtype
except G, X or S. If the controlled bus has local reactive control (subtypes E or Q within its limits) the
LTC feature is temporarily deactivated. However, if both terminal buses of the transformer are simultane-
ously reactively controlled, the LTC transformer assumes a different control to minimize the var exchange
between buses. This assumes most effective utilization of local VAR sources.

Subtype Q This specifies an LTC transformer that controls the VAR flow through itself. Positive controlled
quantities are from bus 1 to bus 2. However, for simplicity, the control point is taken inside the equivalent
pi from the fixed tap side to the variable tap side. The controlled VARs value is𝑄𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑+/−𝑄𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

when 𝑄𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is the MIN scheduled field and 𝑄𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 is the MAX scheduled field.

Subtype P This subtype defines an LTC phase shifter that controls real power flowing through itself. Pos-
itive controlled quantities are from bus 1 to bus 2. However, for simplicity, the control point is taken
inside the equivalent pi. The controlled power is 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑+/−𝑃𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = MAX SCHED;
𝑃𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = MIN SCHED).

Subtype N This specifies an LTC transformer that provides constraints on the reactive power flow through
itself. Ordinarily, it provides no control, but if its reactive flow limits are exceeded, it becomes a type Q
LTC transformer and holds the MVAR flow within the inequality constraints assigned. The controlled flow
is within 𝑄𝑚𝑖𝑛 ≤ 𝑄′

𝑚𝑎𝑥(: 𝑚𝑎𝑡ℎ : = MIN SCHED; 𝑄𝑚𝑎𝑥 = MAX SCHED).

Subtype M This specifies an LTC phase shifter that provides constraints on the active power flow through
itself. Ordinarily, it provides no control, but if its active power limits are exceeded, it becomes a type P
LTC phase shifter and holds the MW flow within the inequality constraints assigned. The controlled real
power flow is within limits 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥 (𝑃𝑚𝑖𝑛 = MIN SCHED; 𝑃𝑚𝑎𝑥 = MAX SCHED).

Fig. 2.5.41: Regulating Transformer Data Input Input Format

82 Chapter 2. Contents



Interactive Power Flow

Table 2.5.29: Column Description for Regulating Transformer Data
Column ID Field Format Description
1 yes A1 Record type - R for LTC

and automatic phase-
shifter data. A record
type T must be in same
system to provide full data
required.

2 no A1 Subtype - See regulat-
ing transformer and phase-
shifter subtypes.

3 no A1 Change code - see System
Changes

4-6 no A3 Ownership code
7-14 yes A8 Bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 Variable tap side if T_max

and T_min cannot orient
T_x. 0 - Low alpha is fixed
1 - Bus 1 is variable 2 -
Bus 2 is variable

20-27 yes A8 Bus name 2
29-31 yes F4.0 Base kV 2
34-45 no A8,F4.0 Controlled bus name and

base kV
Multiple Use of columns 46-67 For subtypes blank, V, Q and N
46-55 no 2F5.2 Maximum and minimum

kV taps. Data must be en-
tered.

56-57 no I2 Total number of LTC taps.
If blank, program assumes
continuous action.

58-67 no 2F5.0 Scheduled MVAR flow
(subtype Q) or maximum
and minimum MVAR
flow (subtype N) through
transformer Metered at
bus name 1 on this record.

For subtypes P and M
46-55 no 2F5.2 Maximum and minimum

angle in degrees. Data
must be entered.

56-57 no I2 Total number of phase
shift positions available.
If blank, program assumes
continuous action.

58-67 no 2F5.0 Scheduled MW flow
(subtype P) or maximum
and minimum MW flow
(subtype M) through trans-
former. Metered at bus
name 1 on this record.

For all subtypes
75-77 no A1,I2

Energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits

78-80 no A1,I2
De-energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits

2.5. Record Formats 83



Interactive Power Flow

2.5.30 Series Compensated RANI Model (RZ)

RANI stands for Rapid Adjustment of Network Impedance and represents a series connected thyristor which changes
its series impedance to control power or voltage. See table below.

Fig. 2.5.42: RANI Thyristor Data Input Format

84 Chapter 2. Contents



Interactive Power Flow

Table 2.5.30: Column Description for Series Compensated RANI Model
Column ID Field Format Description
1-2 yes A2 Record type - RZ
3 no A1

Change Code
Blank - add M - mod-
ify D - delete R - re-
store

7-14 yes A8 Bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 Variable tap side if T_max

and T_min cannot orient
T_x. 0 - Low alpha is fixed
1 - Bus 1 is variable 2 -
Bus 2 is variable

20-27 yes A8 Bus name 2
29-31 yes F4.0 Base kV 2
32 yes A1 ID
33 yes I1 SECTION
34 no A1

TYPE 1, 2, or 3
TYPE 1 - Control
Pc using Xij TYPE
2 - Control V using
Xij TYPE 3 - Con-
trol V using Bis

35-39 no F5.0 Pcmax(MW)
40-44 no F5.0 Pcmin(MW)
45-48 no F4.0 Irate(amps)
49-54 no F6.5 Xijmax(p.u.)
55-60 no F6.5 Xijmin(p.u.)
61-66 no F6.5 Bismax (p.u.)
67-72 no F6.5 Bismin (p.u.)

2.5.31 Transformer Data (T, TP)

This record is applied to two-winding transformers and phase shifters. An equivalent pi representation depicts the
transformer admittance in series with an ideal transformer. The electrical data is specified in terms of the transformer
data which is defined as follows:

𝑅 Equivalent resistance due to copper loss.

𝑋 Leakage reactance.

𝐺 Equivalent core loss conductance.

𝐵 Magnetizing susceptance (always assumed negative; any sign is overridden).

Transformer taps are specified as fixed values for each voltage level or variable (LTC) taps with control over voltage,
real power or reactive power. Variable tap transformers are defined with the addition of a regulating transformer data
record (R) described in Regulating Transformer (R, RV, RQ, RP, RN, RM).

The following three assumptions are made:

2.5. Record Formats 85



Interactive Power Flow

Fig. 2.5.43: Transformer Data

• Nominal base kV of transformer is identical to that of the bus.

• Nominal base MVA of transformer is the same as the system base MVA.

• 𝑅, 𝑋 , 𝐺 and 𝐵 are evaluated on the nominal base and not on the tap setting.

The base kV is used to calculate the equivalent pi. Complications arise when step-up/step-down transformers are
represented as sections in passive node sequence; there is no means to identify the base of the intermittent terminals.
This combination is therefore illegal and will abort with fatal diagnostics.

A transformer is identified by subtype blank and a viable entry for TAP 2. A phase shifter is identified either by a
subtype P or by a blank field for TAP 2. However, the program always adds the subtype P for distinction and convenience
in data changes. The ANGLE is TAP 1 interpreted in degrees. If TAP 2 is blank, a nominal tap is presumed. A phase
shifter assumes a pure voltage rotation and an optional transformation. Increasing the ANGLE will decrease the power
flowing from bus 1 and bus 2.

Four MVA ratings are used to flag overloaded transformers: nominal, thermal, emergency, and bottleneck. The latter
three are “extended ratings”, which supersede nominal ratings. Other entries are similar to the type L record. A sample
of the format and explanations follow.

86 Chapter 2. Contents



Interactive Power Flow

Fig. 2.5.44: Transformer Data Input Format

2.5. Record Formats 87



Interactive Power Flow

Table 2.5.31: Column Description for Transformer Data
Column ID Field Format Description
1 yes A1 Record type - T for trans-

former or phase shifter
2 no A1 Blank or P
3 no A1 Change code - see System

Changes
4-6 no A3 Ownership code - Line

and transformer losses
will be summarized by
ownership at end of final
Area Summary.

7-14 yes A8 Bus name 1
15-18 yes F4.0 Base kV 1
19 no I1 Tie line metering point

flag for area tie lines. 1
in column 19 provides for
metering at bus 1 end. 2
in column 19 provides for
metering at bus 2 end.
Blank allows for program
assumption as follows:
Metering point will be
identified (1) by location
where line ownership
differs from bus owner-
ship or (2) when buses at
end of tie line have same
ownership, then bus 1 will
be the metering point.

20-27 yes A8 Bus name 2
29-31 yes F4.0 Base kV 2
32 yes A1 Circuit identification
33 yes I1 Section number for mak-

ing an equivalent for series
elements (numeric)

34-37 no F4.0 Total MVA rating for all
transformers represented
by this record.

38 no I1 Number of parallel trans-
former banks represented
by this record, for infor-
mation purposes only. The
equivalent impedance is
entered in columns 39-62.

39-44 no F6.5 Per unit impedance R
through transformer from
bus 1 to bus 2 on the
system base MVA for both
windings.

45-50 no F6.5 Per unit impedance X
through transformer from
bus 1 to bus 2 on the
system base MVA for both
windings.

51-56 no F6.5 Per unit G of iron losses on
the system base MVA.

57-62 no F6.5 Per unit B magnetizing
current on the system base
MVA. Note that any sign
is ignored. This quantity
will always be processed
as a negative value.

63-67 no F5.2 Fixed bus 1 TAP or fixed
phase shift in degrees
which describe bus 1
relative to bus 2.

68-72 no F5.2 Fixed bus 2 TAP or blank
for fixed phase shifter.

75-77 no A1,I2
Energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits

78-80 no A1,I2
De-energization Date -
MYY

M =
{1,2,3,4,5,6,7,8,9,O,N,D}
YY = last two digits

81-84 no F4.0 Thermal rating in MVA
85-88 no F4.0 Emergency rating in MVA
89-92 no F4.0 Bottleneck rating in MVA

88 Chapter 2. Contents



Interactive Power Flow

2.5.32 Switched Reactance (X)

Normally shunt capacitor or shunt reactor installations are represented in power flow programs as fixed MVAR values.
However, there frequently is a need to represent voltage controlled capacitor schemes. This program allows for voltage
controlled shunt device installations through use of a switched reactance record type X.

This data record must be used with a type BX bus record. The data on the X record identifies blocks of discrete shunt
susceptance available for reactive control. The blocks may be either inductive (negative) or capacitive (positive). If
both types exist, negative blocks must be given first. Values are given in MVAR at the rated base kV; the actual MVAR
is dependent on the voltage. Discrete reactance units are also referred to as statics.

The discrete segments are specified in steps and increments. Steps defines the number of switchable susceptance units.
The MVAR value of each unit is given in increments. Normally, each unit has a unique MVAR value. In general, when
both reactive and capacitive blocks coexist, two switching lists are given. The reactors are switched first in the following
order: unit 1, unit 2,. . . , unit k, where k is the unit number of last reactor. Similarly, the capacitors are switched next
in the following order: unit k+1, unit k+2,. . . , unit (last). When reactors are switched in, all capacitors are removed
and vice versa. Units are sequentially disconnected in the reverse order. For example, the following one line diagram
depicts a capacitor installation requiring discrete switching.

Fig. 2.5.45: Capacitor Installation Requiring Discrete Switching

For this example the sequential operation would be as follows. Increment 1, 10 MVAR, would be added up to the
number of steps specified (4). If the bus voltage is below the scheduled value after a total of 40 MVARS have been
added to the bus, increment 2 would be added to the number of steps specified, and so on until the scheduled voltage is
achieved. These statics would be disconnected in a similar fashion, but in the reverse order, to reduce the bus voltage.

Shunt susceptance on BX records is ignored when X records are present. Any shunt susceptance listed on any following
+ records is considered fixed and is therefore exempt from the above switching.

The format for inputting switched reactance data follows; and then descriptions of the various columns are given.

Note: Negative MVARs must be listed first

2.5. Record Formats 89



Interactive Power Flow

Fig. 2.5.46: Switched Reactance Data Input Format

Table 2.5.32: Column Description for Switched Reactance Data
Col-
umn

ID
Field

Format Description

1 yes A1 Record code - X for switched reactance
2 no Blank
3 no A1 Change code - see System Changes
4-6 no A3 Ownership code
7-14 yes A8 Bus name 1. This is the bus to which the switched reactances are connected.

Must be a type BX bus.
15-
18

yes F4.0 Base kV 1

21-
28

yes A8 Bus name 2. Controlled bus name - This bus may be local or remote.

30-
32

yes F4.0 Base kV 2

Increment 1:
33 no I1 Number of steps - Number of repetitions (from 1 to 9) to be performed using the

value given in columns 34-38.
34-
38

no F5.0 MVAR - Value at base kV of each step of Increment 1.

Increment 2:
39 no I1 Number of steps - Number of times the value given in columns 40-44 will be

connected. (Will not begin until Increment 1 is completed.)
40-
44

no F5.0 MVAR - Value at base kV of each step of Increment 2.

Increment 3:
45 no I1 Number of steps - Number of times the value given in columns 46-50 will be

connected. (Will not begin until Increment 2 is completed.)
46-
50

no F5.0 MVAR - Value at base kV of each step of Increment 3.

Increment 4:
51 no I1 Number of steps - Number of times the value given in columns 52-56 will be

connected. (Will not begin until Increment 3 is completed.)
52-
56

no F5.0 MVAR - Value at base kV of each step of Increment 4.

57-
80

no Add data for Increments 5 through 8 in a similar fashion.90 Chapter 2. Contents



Interactive Power Flow

2.5.33 Zone Rename (Z)

This is a specialized change record which permits the bus zones to be permanently renamed. This record has a Z in
column 1, followed by a maximum of 15 pairs of old zone names/new zone names. Additional Z records may follow
to change a maximum of 150 zones. See table below.

Several old zones may be consolidated into a single new zone name. However, an old zone may not be segregated into
two more new zones.

Any Z record must be the first change record encountered. The zones are immediately renamed. Following these
records, additional system changes may be entered in the normal way, and all data are assumed to conform with the
new zone names.

Fig. 2.5.47: Zone Rename Data Input Format

2.5. Record Formats 91



Interactive Power Flow

Table 2.5.33: Column Description for Zone Rename
Column ID Field Format Description
1 yes A1 Record type - Z
2-3 no A2 Blank
4-5 no A2 Old zone name - any blank

zone to be changed must
appear in this column.
Otherwise, blank “old
zones,” terminate the
scan.

6-7 no A2 New zone name
8 no A2 Blank
9-10 no A2 Old zone name
11-12 no A2 New zone name
13 no A1 Blank
14-15 no A2 Old zone name
16-17 no A2 New zone name
18-77 no • Repeat of the above for-

mat sequence: one blank
followed by two columns
for old zone name and
two more columns for new
zone name.

2.5.34 Area Rename (ZA)

This is a specialized change record that permits area names to be changed. Each ZA record renames one area.

The new name must be unique. If the new name exists, the rename is ignored. Thus, Area Rename cannot be used to
consolidate areas.

Fig. 2.5.48: Area Rename Data Input Format

92 Chapter 2. Contents



Interactive Power Flow

Table 2.5.34: Column Description for Area Rename
Column ID Field Format Description
1-2 yes A2 Record type - ZA
3 NA
4-13 no A10 Old area name
14-15 NA
16-25 no A10 New area name
26-80 NA

2.5.35 Bus Rename (ZB)

This is a specialized change record that permits bus names and base kV’s as well to be altered. Each ZB record renames
one bus.

The new name must be unique. If the new name exists, the rename is ignored. Thus, Bus Rename cannot be used to
consolidate buses.

Fig. 2.5.49: Bus Rename Data Input Format

Table 2.5.35: Column Description for Bus Rename
Column ID Field Format Description
1-2 yes A2 Record type - ZB
3-6 NA
7-14 no A8 Old bus name
15-18 no F4.0 Old base kV
19-20 NA
21-28 no A8 New bus name
29-32 no F4.0 New base kV
33-80 NA

2.5. Record Formats 93



Interactive Power Flow

2.6 Power Flow Control (PFC)

2.6.1 Overview

This section describes the batch Power Flow Control (PFC) language and its syntax, commands and subcommands.
Command entries follow the PFC description in alphabetical order. The table below helps you turn quickly to a specific
command entry. The table also gives you a quick description of all of the commands.

Each command entry explains the meaning of the command and gives its syntax. Some commands have subcommands,
which are also described. Many entries have additional discussion, and some have examples, particularly where a
command’s usage may not be immediately obvious.

2.6.2 The bpf Control Language

The bpf Power Flow Control language (PFC) consists of a sequence of program control statements, each of which in
turn consists of commands, subcommands, keywords, and values. All statements have a reserved symbol in column 1
to identify a command or subcommand.

Every statement is scanned, and each command or subcommand found is compared with a dictionary in the program
to find the relevant instructions. With the exception of the identifier in column 1 of each statement, PFC is free-form.
All statements must be in the PFC file.

PFC has three levels of control, which are identified by one of three identifiers in column one.

1. The left parenthesis ( identifies the top (or process) level of control. Only four commands are valid here —
(POWERFLOW, (NEXTCASE, and (STOP or (END.

2. The slash / identifies the second (or command) level of control. Many commands are valid here, and they are
listed and described in this chapter. Commands generally enable or disable output options, define parameters
needed for the process, etc. Subprocesses are major operations involving considerable processing and additional
data. Only optional IPF processes are requested with these commands.

3. The right angle bracket > identifies the third (or subcommand) level of control. A few commands have sub-
commands associated with them. These subcommands are described in the associated command entries. These
subcommands act as qualifiers for the second-level commands.

In addition to the foregoing syntactic units, a command enabling a microfiche option is available. Its control symbol is
the left square bracket ([)

Almost every PFC statement fits one of the following formats, and the few that do not are very similar.

Note: Spaces can be used for readability. Commas are used to separate syntactic units such as a list of values or
keyword/value assignments.

Most statements fit on one line, but some extend over multiple lines. These exceptions are noted. When used, put a
hyphen (-) where you want to break and continue the command parameters starting in or after column 2 of the next
line, column 1 must be blank.

Each general format is followed by an example.

• A simple command with no keywords or values:

/ command
/ REDUCTION

94 Chapter 2. Contents



Interactive Power Flow

Fig. 2.6.1: Hierarchical Levels of PFC Statements

• A command assigned a simple keyword. (This is a “telescoped” syntax available for some commands.)

/ command = keyword
/ AI_CONTROL = CON

• A command followed by a comma with a keyword. (This is a “telescoped” syntax available for some commands.)

/ command , keyword
/ F_INPUTLIST,NONE

• A command followed by a comma with a value assigned to a keyword.

/ command , keyword = value
/ P_ANALYSIS_RPT, LEVEL = 4

• A command followed by a comma with multiple values assigned to a keyword. Note optional continuation with
hyphen (-).

/ command , keyword = value , value , value ,...
/ P_INPUT_LIST, ZONES=NA,NB,NC,ND,NE,NF, -

NG,NH,NI,NJ,NK

• A command followed by a comma with multiple value/keyword assignments.

/ command , keyword = value , keyword = value ,...
/ MERGE_OLD_BASE, SUB_SYSTEM_ID = AREA-1, OLD_BASE = TESTDC.BAS

• A command followed by a data record(s).

/ command data record
/ NETWORK_DATA
B GEN1 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN2 HI 230 1 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN3 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0

• A subcommand followed by a comma with multiple comma-separated values.

2.6. Power Flow Control (PFC) 95



Interactive Power Flow

>subcommand, value, value, value ,...
>SAVE_ZONES,NA,NB,NC,ND,NE,NF,NG,NH,NI,NJ,NR

• A subcommand followed by a data record on the next line.

>subcommand
data record
>SAVE_AREAS
A AREA 2

2.6.3 Special Characters

Two special characters are available to document the control stream or to improve readability.

• A period (.) in column 1 of a record identifies a command comment and the record will be ignored by the
processing. It is used to document a PFC file or to improve readability. This comment is only visible in a listing
of the PFC file or in the editor used to create it.

• The underscore symbol _ has no syntactic significance and may be used freely to punctuate a word for visual
readability.

Note: The hyphen or minus sign “-” and the underscore “_” symbol are different characters! Thus,
P_O_W_E_R_F_L_O_W is the same as POWER_FLOW which is the equivalent of POWERFLOW. OLD_BASE is the same
as OLDBASE but not the same as OLD-BASE, etc.

2.6.4 Default Convention

All default values for a command are listed on the first line in the command descriptions. Various keywords are listed
below the default values. Default values have been selected to satisfy a majority of users; therefore, their use is to
invoke exceptions to standard conventions. Once a default value has been enabled, it remains in force for the duration
of the process. There is one exception to this:

/ P_INPUT_LIST

After the first case has been processed, P_INPUT_LIST is set to NONE. This conforms to the default philosophy of
selecting all options that fulfill a majority of requirements.

2.6.5 Microfiche Control Statement

``[ FICHE,COPIES = n ]``
``( FICHE,COPIES = n )``

This command requests “n” copies of microfiche listings to be made. If it is omitted, the fiche file is not saved. If “”n”
is zero or omitted, no copies are made. When it is used, this control must be first in the job stream.

96 Chapter 2. Contents



Interactive Power Flow

2.6.6 Level 1 PFC Commands

( POWERFLOW )

This command initiates the processing of the network which is defined with subsequent commands and
subcommands.

( NEXTCASE )

This is the same as ( POWERFLOW ) except that the base network to be processed is the current network.
Changes are expected; otherwise, the same network is processed again with the same data and controls in
memory from the previous case. ( NEXT_CASE ) cannot be the first command in a program control file.

( END ) or ( STOP )

This stops the execution of the IPF program.

Each network is processed with a ( POWERFLOW ) or ( NEXTCASE ) command. The first must always be (
POWERFLOW ). Several cases may be concatenated (stacked) in the following format:

``( POWERFLOW )`` statement for case 1
``( POWERFLOW )`` statement or ``( NEXTCASE )`` statement for case 2
.
.
.
``( POWERFLOW )`` statement or ``( NEXTCASE )`` statement for case n
``( STOP )``

The following control statement and the optional keywords that go with it identify the OLD_BASE file, optionally perform
miscellaneous temporary changes to OLDBASE, set solution parameters, and solve the resultant network.

(POWERFLOW CASEID = <casename>, PROJECT = <projname>)

casename is a user-assigned 10-character identification for the case. projname is a user-assigned, 20-character iden-
tification for the project or study to which this case applies. (No blanks are allowed; use hyphens instead.)

The following statement is used if the Powerflow solution is to be run starting with data and controls from the previous
base case in residence.

( NEXTCASE, CASEID = <casename>, PROJECT = <projname> )

Note that / OLD_BASE is not used with a ( NEXTCASE ) statement since a base data file is already in residence.

2.6.7 Level 2 and 3 PFC Commands

Each Level 2 statement starts with a slash (/) in the first position.

After the slash are keywords and/or values separated by a comma (,). Specific values are assigned to the keywords in
the following format:

keyword = value

When a keyword is requesting a list, for example, a zone list, the list may be continued on the next record by leaving
column 1 of that record blank or by putting a comma in column 1 and continuing the list.

Level 3 statements consist of subcommands that specify keyword values for second-level commands only. Each sub-
command for level 3 statements starts with the right angle bracket (>) in column 1. After the right angle bracket are
keywords and/or values separated by commas (,). Most often, specific values are assigned by following a keyword
with an equal sign (=) and then the desired value.

2.6. Power Flow Control (PFC) 97



Interactive Power Flow

2.6.8 PFC Commands

The rest of this chapter discusses all the PFC commands, in alphabetical order. Each command entry includes the
details of syntax and usage. The more involved commands show examples of use. Refer to the table below to locate a
PFC command quickly.

In the format statement for each command, the keywords and parameter values are all vertically aligned in the same
column. The top row is the default value. Alternate value assignments such as ON or OFF are identified by the appropriate
symbols and have the syntax keyword=value.

Required text is shown in UPPER-CASE while parameter values specified by the user are printed in lower-case and
usually enclosed by angle brackets, thus, <list>. Angle brackets are omitted when they may cause confusion with the
Level 3 control symbol.

The optional underscore symbol (_) may be used to break up words for visual readability. The computer will read the
words as though they were not broken.

Table 2.6.1: PFC Commands
Command Name Description
AGC Emulates automatic generation control.
AI_LIST Species detail in area interchange listing.
ANALYSIS_SELECT Selects analysis reports for printing or microche.
BRANCH_DATA Species a master branch and bus data le for base case.
BUS_SENSITIVITIES Calculates system response to capacitor switching operations.
CHANGE_BUS_TYPE Disables voltage control in system.
CHANGE_PARAMETERS Perturbs parameters for start of new solution.
CHANGES Species system data change records.
COMMENT Species comment records.
COMMON_MODE_ANALYSIS Analyzes the results from a series of common mode cases in the format of the OUTAGE_SIMULATION
F_ANALYSIS_RPT Species report of zones or owners for microche.
F_INPUT_LIST Lists input data on microche.
F_OUTPUT_LIST Lists output data on microche.
GEN_DROP Balances generation drop by picking up generation.
HEADER Species header information for reports.
INCLUDE_CONTROL Species a le for control commands.
LINE_EFF Denes minimum percent line loading for report.
LINE_SENSITIVITIES Determines line sensitivity by controlling LTC and AI_CONTROL.
%LOAD_DISTRIBUTION Converts constant power, etc., into user-specied MVA, etc.
LOSS_SENSITIVITIES Gives information about system losses.
MERGE_OLD_BASE and MERGE_NEW_BASE Extracts information from two subsystems to create a new system.
MVA_BASE Changes base MVA to an assigned MVA.
NETWORK_DATA Species bus and branch data.
NEW_BASE Denes the le name for a new case.
OI_LIST Lists ownership interchange.
OLD_BASE Species a previously existing solved case as the new case to start with.
OUTAGE_SIMULATION Simulates line outages, load dropping, generator outages and rescheduling.
OVERLOAD_RPT Species overload parameter limits for report.
P_ANALYSIS_RPT Creates an analysis report.
P_INPUT_LIST Lists input data on paper.
P_OUTPUT_LIST Lists output on paper.
REBUILD Rebuilds all data tables from current OLDBASE le.
REDUCTION Reduces a network.
RPT_SORT Sorts output data of solved network.

continues on next page

98 Chapter 2. Contents



Interactive Power Flow

Table 2.6.1 – continued from previous page
Command Name Description
SAVE_FILE Creates various output les, including the SIF (Stability Interface File).
SOLUTION Enables solution options and post-solution processes.
SORT_ANALYSIS Controls sort order for analysis listings.
TRACE Monitors data to aid data verication.
TRANSFER_SENSITIVITIES Causes analysis of transfer sensitivities.
TX_EFF Compares total and core transformer losses.
USER_ANALYSIS Generates custom analysis listings

2.6.9 AGC

This command emulates automatic generation control (AGC) in the solution algorithm. Under AGC, real power excur-
sions on several generators from base values are allocated in proportion to their total excursion. This in effect distributes
the slack bus real power excursions to a set of selected units. The slack bus excursion, which drives AGC, may be either
a system slack bus or an area slack bus.

The individual AGC units are identified with type B (bus) records which follow the / AGC command. columns (1:18)
correspond with the original format. Beyond column 18, data is free field.

B <bus_name,base kV> Pmin=<##>, Pmax=<##>, Pgen=<##>, %=<##>

where

Pmin Minimum generation in MW. Default value is 0.0.

Pmax Maximum generation in MW. Default is Pmax, which is specified on the bus record.

Pgen Base generation is MW, which is used to compute the excursions. Default is scheduled or actual MW
from the base case.

% Percentage. The default allocates% in proportion to Pmax

A maximum of 24 AGC units may be specified. One of the units must be a system or area slack bus. Usually, AGC
schemes converge faster than non-AGC. The exception occurs when Pmin or Pmax limits are hit and some readjustment
occurs.

General Description

An example illustrates the concept. In Case 1, there are two generators, GEN1 and GEN2, with initial and final values
shown in the table below.

Table 2.6.2: Values Without AGC
Bus Initial P Final P Excursion
GEN1 (slack) 1000 1442 442
GEN2 1000 1000 0
TOTAL 2000 2442 442

In Case 2, we apply AGC with 50% on each machine. Presuming that losses are unchanged (for simplicity), the initial
and final values are shown in the table below.

2.6. Power Flow Control (PFC) 99



Interactive Power Flow

Table 2.6.3: Values With AGC
Bus Initial P % Final P Excursion
GEN1 (slack) 1000 50 1221 221
GEN2 1000 50 1221 221
TOTAL 2000 100 2442 442

Notes and Restrictions A maximum of 24 generators are permitted. One of the generators must be a system slack bus
or an area interchange bus. Recall that the dynamics which drive AGC comes from slack bus P excursions.

If any unit hits a limit, the remaining active units redistribute their percentages and continue AGC control.

The results are summarized in the listing AGC Control. This listing is controlled with / ANALYSIS_SELECT com-
mand.:

/ ANALYSIS_SELECT
> SUM%VAR

If area interchange control is ON, all AGC units should reside in the same area. Violations of this rule are flagged
with warning diagnostics. AGC control will obscure the change in slack bus power shown in the tie line Summary of
Area Interchange. The true slack bus effects within the area would be the aggregate effects of all AGC units. The area
interchange summary obscures this effect.

When / AGC’s and / GEN_DROP coexist, / AGC operates with a higher priority. In actuality, the two should not coexist.

The validity of AGC can be verified in the analysis summary AGC Control. In normal conditions, the scheduled and
actual percentage participation should be equal. If these quantities are not equal, it is usually because Pmax or Pmin
limits have been hit. In this instance, a comment appears.

Actual % / Sched % = ****.*

All of the active units should have an individual ratio

2.6.10 AI_LIST

This command controls the level of detail in the area interchange listing.:

/ AI_LIST = FULL

FULL is the default. The options are:

FULL Area interchange matrix, Area slack bus summary, and tie line flows.

MATRIX Area interchange matrix.

TIELINE Tie line flow summary

2.6.11 ANALYSIS_SELECT

This selects individual analysis reports for printing or microfiche. It supersedes / F_ANALYSIS and / P_ANALYSIS.
Unlike these commands which select groups of reports according to their “level” the / ANALYSIS_SELECT command
selects reports individually.

A solitary / ANALYSIS_SELECT command defaults all analysis listings to no print/no fiche status.

Printing and/or microfiche are enabled with the commands: > FICHE and > PAPER. These commands independently
restrict the contents of FICHE or PAPER reports to subsets of Zones, Ownerships or Areas.

100 Chapter 2. Contents



Interactive Power Flow

The desired analysis reports are individually selected using > commands containing abbreviated report names, e.g., >
UNSCH.

Each > (report) command accepts an optional F or P qualifier. This will restrict the selected report to Fiche or Print
respectively. If neither appear, both F and P are presumed to be selected. For example, > UNSCH, P will print the
unscheduled reactive report.

A special option exists on the > LINEFF report. Its entirety is:

> LINEFF, SORT = BUS_NAME, OUTPUT=filename, FIELD_WIDTH = 132,F,P
80,F,P

> VOLTAGE,
OWNER,
ZONE

All quantities are optional.

SORT Controls sorting by bus kV_name, owner_name, or zone name.

OUTPUT Copies a duplicate report to the named file.

FIELD_WIDTH Controls the report width or the named file.

The following is a full list of the / ANALYSIS_SELECT command set.:

/ ANALYSIS_SELECT
> FICHE,ZONES=<zone1,...>,AREAS=<area1,...>,OWNERS=<owner1,...>
> PAPER,ZONES=<zone1,...>,AREAS=<area1,...>,OWNERS=<owner1,...>
> USERAN - User-defined analysis listing. (Used with / USER_ANALYSIS.)
> UNSCH - Buses With Unscheduled Reactive.
> LOSSOWN - Total System Generations and Loads by Owner.
> SYSTEMZONE - System Generations,Loads,Losses and Shunts by Zones.
> UVOV - Undervoltage-Overvoltage Buses.
> LINELOAD - Transmission Lines Loaded Above xxx.x% of Ratings or with more than 30␣
→˓degrees of electrical angle.
> TRANLOAD - Transformers Loaded Above xxx.x% of Ratings.
> TRANEX - Transformers Excited Above xxx.x% over Tap.
> XSYSTEMLOSS - Transmission System Losses.
> BPALOADS - BPA Industrial Loads.
> DCSYSTEM - DC System.
> SHUNTSUM - Shunt Reactive Summary.
> SUMLTC - Summary of LTC Transformers. - Summary of LTC Reactive Utilization
> SUMPHASE - Summary of Phase-shifters.
> SUM%VAR - Summary of %Var-controlled buses. - Summary of AGC Control - Summary of Line␣
→˓Drop Compensation
> SUMBX - Summary of Type BX buses. > SUMRAN - Summary of Adjustable Var compensation.
> SERIESCOMP - Transmission Lines Containing Series Compensation.
> BUS - Bus Quantities. > SPIN - Spinning Reserves.
> LINEEFF - Transmission Line Efficiency Analysis. (Lines Loaded Above xxx.x % of␣
→˓Nominal Ratings).
> TRANEFF - Transformer Efficiency Analysis. - Total Losses Above xx.xx % of Nominal␣
→˓Ratings.
> TRANLOSS - Transformer Efficiency Analysis - Core Losses Above xx.xx % of Nominal␣
→˓Ratings.

2.6. Power Flow Control (PFC) 101



Interactive Power Flow

2.6.12 BRANCH_DATA

/ BRANCH_DATA, FILE = <filespec>, DATE = <myy>,
BUSDATA_FILE = *

<filespec>

This command specifies that the base case will be established from a master branch data file and associated bus data
file. Branch data selected from this file will have an energization date (date in) and a de-energization date (date out)
corresponding with the DATE specified on the above command.

If BUSDATA_FILE is not specified or has parameter value *, the program expects bus data to follow in the input stream.

See MERGE_OLD_BASE and MERGE_NEW_BASE for more information about branch data file merging. Using the
MERGE_OLD_BASE and MERGE_NEW_BASE commands is preferred.

2.6.13 BUS_SENSITIVITIES

/ BUS_SENSITIVITIES

The primary motive of sensitivity is to calculate the instantaneous system response to sudden capacitor switching
operations. This is difficult to model in the Powerflow because all LTCs must be turned off. This may cause solution
divergence because LTCs are an integral part of any DC system. This problem is circumvented using sensitivities.

By recalculating the Jacobian matrix, various constraints can be changed. The flexibility of these constraints is evident
in the format of the sensitivity command.:

/ BUS_SENSITIVITIES,LTC=ON,AI_CONTROL=CON,Q_SHUNT=ADJ,Q_GEN=ADJ
OFF, OFF FIXED FIXED

MON

The top line defines the default values.

The first two options correspond with the standard solution options. The second two options define the conditions in
which type BQ and BG buses can operate holding constant voltage.

For example, enabling the option Q_SHUNT = FIXED, type BQ buses have all shunt fixed. If there is no rotating ma-
chinery (𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛 are zero), then the bus holds constant 𝑄 (𝑃𝑄). Since type BG buses always have Q_shunt
fixed, this option has no affect on generator buses.

Similarly, by enabling the option Q_GEN = FIXED, type BQ and BG buses have all generation fixed and operate in state
𝑃𝑄. Type BG buses will operate in state 𝑃𝑄. If BQ buses have no shunt, they also will operate in state 𝑃𝑄.

In order of time response, the generators respond within several seconds. Thus, Q_GEN will normally be adjustable.
LTC’s, DC LTC’s, and switched capacitors are controlled by time-delayed voltage relays to minimize spurious opera-
tion.

LTC’s 0.5 - 3.0 minutes

DC LTC’s 5 seconds

CAP/REACTORS:5 - 30 seconds

The slowest component is area interchange control. Its response time is 0.5 to 10 minutes.

By appropriate selection of options, the Jacobian matrix can represent nearly any time frame of response.

102 Chapter 2. Contents



Interactive Power Flow

Selected Buses

Following the BUS_SENSITIVITIES record, individual buses are selected for perturbation. These buses are identified
by the B formatted records that follow them. A maximum of 50 buses may be specified.

The perturbed quantity is identified by nonzero entities in one of the fields: P_load, Q_load, G_shunt, B_shunt,
P_generation or Q_generation.

The fields on the B-blank record determine which sensitivity 𝑑𝑃
𝑑𝜃 , 𝑑𝑃

𝑑𝑉 , or 𝑑𝑄
𝑑𝑉 is computed.

Fig. 2.6.2: B-blank Record Sensitivity Fields

Table 2.6.4: Field Values for Sensitivities
Sensitivity Column 2 PLOAD, PSHUNT, PGEN QLOAD, QSHUNT, QSCHED
𝑑𝑃
𝑑𝜃 Not required Required Not required
𝑑𝑃
𝑑𝑉 Literal: “V” Required Not required
𝑑𝑄
𝑑𝑉 Not required Not required Required
𝑑𝑄
𝑑𝑉 * (blank) (blank) (blank)

* This is the default.

Repeat Sensitivities

A powerful feature of the sensitivity process is the ability to refactor the Jacobian matrix under different control schemes.
For example, one / BUS_SENSITIVITIES record could enable only the Q_GEN option (exciters on, everything else off)
for an instantaneous response. Following the necessary B formatted records a second / BUS_SENSITIVITIES record
could enable all options for a long term response. Assuming the same bus list is repeated, then a comparison between
the two corresponding sensitivities would yield the short-term and long-term effects of the bus’s injection perturbation.

2.6. Power Flow Control (PFC) 103



Interactive Power Flow

Example

The following is an actual case. Bus OLYMPIA 230 was specified for a -172 MVAR shunt application. If Q_Load or
Q_Generatorwas specified, the actual Q_Perturbationwould be -172 MVAR. For Q_Shunt, the Q_Perturbation
is calculated.:

Delta (Q)= Q_Shunt * V**2
= -172 * (1.067)**2
= -195.82 MVAR
New_Voltage (kV) = Old_Voltage (kV) + Sensitivity * Delta_Q
= 245.45 kV + 0.0334 * (-195.82)
= 245.45 kV - 6.54 kV
= 238.91 kV

The correct computed value on the listing is 238.90 kV. The different figures in the example are due to round off.

The correlation with actual Powerflow cases is very close. The calculated voltage excursion -6.54 kV is within two
percent of the actual excursion. The accuracy is significant because the actual and estimated voltages will differ 0.001
per unit at most!

Sample Deck Setup

(POWERFLOW,...)
.
.
.
/ CHANGES
.
.
.
/ BUS_SENSITIVITIES,LTC=ON,AI_CON=OFF,Q_SHUNT=ADJ,Q_GEN=ADJ
B MONROE 500 316

Output

BUS_SENSITIVITIES COMPUTED WITH THE FOLLOWING CONTROLS:

LTC CONTROL ( ) OFF
--- ------- (X) ON (FULL CONTROL )

( ) ON (NO VOLTAGE CONTROL)

AI CONTROL (X) OFF
-- ------- ( ) CONTROL (DEFAULT)

( ) MONITOR

Q_SHUNT CONTROL (X) ADJUSTABLE
------- ------- ( ) FIXED

Q_GENERATION CONTROL (X) ADJUSTABLE
------------ ------- ( ) FIXED

0 MONROE 500.0 A 316.0 MVAR CHANGE IN SHUNT AT THIS BUS WILL CAUSE THE FOLLOWING␣
→˓VOLTAGE CHANGES

(continues on next page)

104 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

0 BUS BASE BUS BASE ----- DVOLT/DQ ----- ------ BASE VOLTAGE␣
→˓------- ------ NEW VOLTAGE ------

(P.U./P.U.) (KV/MVAR) (P.U. KV) ␣
→˓ (KV) (P.U.KV) (KV)

MV-SVC 19.6 -0.0106 -0.0023 1.118 ␣
→˓ 21.92 1.081 21.10

MONROE 500.0 0.0061 0.0321 1.052 ␣
→˓525.84 1.073 537.05

WRK 25 25.2 0.0040 0.0010 1.041 ␣
→˓ 26.22 1.054 26.59

MONROE 230.0 0.0039 0.0092 1.037 ␣
→˓238.54 1.051 241.77

GDK 4 4.0 0.0039 0.0002 1.049 ␣
→˓ 4.20 1.063 4.25

MONROE T 230.0 0.0038 0.0090 1.035 ␣
→˓237.98 1.048 241.12

RIM 12 12.6 0.0037 0.0005 1.041 ␣
→˓ 13.11 1.054 13.29

RYL 12 12.6 0.0037 0.0005 0.996 ␣
→˓ 12.55 1.009 12.71

WRK 60B2 60.0 0.0037 0.0023 1.020 ␣
→˓ 61.17 1.033 61.97

WRK 60B1 60.0 0.0037 0.0023 1.020 ␣
→˓ 61.22 1.033 62.01

2.6.14 CHANGE_BUS_TYPE

/ CHANGE_BUS_TYPE

This command disables voltage control in selected areas of the system and performs bus type changes from a voltage
control type to a more passive type. The changes it makes are permanent and apply to the case in residence. If this
command appears before any system changes, the bus type changes will apply before the system changes, exempting
any new or changed buses. If this command appears after any system changes, any new or changed buses will be subject
to bus type changes invoked with this command.

An example is shown below.

/ CHANGE_BUS_TYPE, BQ=B, BG=BQ, BT=B , BX=B , -
LTC = OFF, -
AREAS=<area_1,...>, -
ZONES=<zone_1,...>, -
LIST=ON

2.6. Power Flow Control (PFC) 105



Interactive Power Flow

Bus type changes

Four types of buses may be changed: BQ, BG, BT and BX. All possible bus type transitions are depicted above using the
format <old_type> = <new_type>.

The full repertoire is listed in the table below. (Note that some restrictions apply.)

Table 2.6.5: Bus Type Changes
Change Restriction
BQ –> B If PGEN = 0.0 and QGEN =0.0
BQ –> BF If PGEN <= 0.0.
BQ –> BF* Unconditional.
BG –> BQ If PGEN > 0.0.
BG –> B If PGEN <= 0.0.
BG –> BF If PGEN = 0.0.
BG –> BF* Unconditional.
BT –> B (This deletes any adjacent LTCs which are controlling BT nodes.)
BX –> B
BX –> BF
BX –> BF*

LTC Transformer Control

A bus type change BT=B will delete LTCs only if the controlled bus is type BT. A more general option:

LTC = OFF

disables all LTCs within the specified area except for any dc commutating transformers.

LIST

The LIST parameter accepts two values – ON and OFF. The default is ON. This applies to the CHANGE_BUS_TYPE
summary where the initial and final state of each bus affected is depicted. Setting LIST=OFF is recommended for
repetitious batch runs.

Excluded Buses

Means are available to exempt individual buses from type changes defined in the / CHANGE_BUS_TYPE command.
These buses are excluded with the following command:

>EXCLUDE_BUS
B name base
B name base
. . .
. . .

106 Chapter 2. Contents



Interactive Power Flow

Line Drop Compensation

This feature temporarily replaces the ordinary BG -> BC voltage control of a remote bus with a BG control of a compen-
sated voltage, which is specified as a percentage within the step up transformer. This control scheme is valid only for
this case, and may be introduced only within context of a CHANGE_BUS_TYPE command. In subsequent cases, these
generators revert to their normal control mode

The target compensated voltage is defined with a computed voltage limit. That limit is derived from two base case
terminal voltages – the BG bus and the remote BC bus (the remote bus may be another type). The formula used is

𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑖𝑛 = 𝑃𝐶𝑇 * 𝑉 𝑏𝑎𝑠𝑒
𝐵𝐺 + (1− 𝑃𝐶𝑇 ) * 𝑉 𝑏𝑎𝑠𝑒

𝐵𝐶

Example:

/ CHANGE_BUS_TYPE, BQ = B, BX = B, BG = BQ
...
> LINE_DROP_COMPENSATION
BG COULEE 13.8, 70%
BG CHIEF JO13.8, 80%

Restrictions on Line Drop Compensation The following restrictions apply to line drop compensation:

• All buses selected for Line Drop Compensation must be type BG. All buses selected are exempt from any bus
type change BG -> BQ or BG -> B.

• The controlled remote bus must be immediately adjacent to the generator.

• The specified percentage should be between 0 and 100%. A warning is issued if the specified percentage is
outside this range.

• A maximum of 20 generators may be selected for line drop compensation.

• The line drop compensation is case specific. It defines the base solution, but is not saved on the base history data
file.

Reactive Compensation

This feature is similar to Line Drop Compensation; it temporarily replaces the ordinary BG -> BC voltage control of a
remote bus with a BG control of a compensated voltage, which is specified as the voltage drop from the bus terminal
voltage computed with the generator reactive power in series with a user-specified impedance. This control scheme is
valid only for this case, and may be introduced only within context of a CHANGE_BUS_TYPE command. In subsequent
cases, these generators revert to their normal control mode

The target compensated voltage is defined with a computed voltage limit. That limit is derived from two base case
terminal voltages – the BG bus and the remote BC bus (the remote bus may be another type). The formula used is

𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑖𝑛 = 𝑉 𝑏𝑎𝑠𝑒
𝐵𝐺 − 𝑄𝐵𝐺

𝑉𝐵𝐺
*𝑋𝐵𝐶

𝑋𝑐 =
𝑃𝐶𝑇

100
* 100

𝑀𝑉𝐴𝑏𝑎𝑠𝑒

where 𝑃𝐶𝑇 is the user-specified percentage and 𝑀𝑉𝐴𝑏𝑎𝑠𝑒 is the user-specified machine MVA.

Example:

/ CHANGE_BUS_TYPE, BQ = B, BX = B, BG = BQ
...
> REACTIVE_COMPENSATION

(continues on next page)

2.6. Power Flow Control (PFC) 107



Interactive Power Flow

(continued from previous page)

BG COULEE 13.8, 5%, 100
BG CHIEF JO13.8, 5%, 100

Restrictions on Reactive Compensation The following restrictions apply to reactive compensation are identical to
those which apply to line drop compensation:

• All buses selected for Reactive Compensation must be type BG. All buses selected are exempt from any bus type
change BG -> BQ or BG => B.

• The controlled remote bus must be immediately adjacent to the generator.

• The specified percentage is typically in the range 5-6%. It may be negative if the voltage is internal to the machine.

• A maximum of 20 generators may be selected for reactive compensation.

• The reactive compensation is case specific. It defines the base solution, but is not saved on the base history data
file.

Output Reports A special summary of all line drop compensation buses is listed in the analysis group under the title
Summary of Line Drop Compensation. It is available either as a level 4 option on the /P_ANALYSIS or /F_ANALYSIS
command or as the SUM%VAR option on the /ANALYSIS_SELECT command.

/ANALYSIS_SELECT
SUM%VAR

Example

An example is shown below.:

( POWERFLOW, ...)
...
...
...
/ CHANGES, ...
...
...
...
/ CHANGE_BUS_TYPE, BG=BQ, BT=B ,BX=B, -

LTC = OFF, -
AREAS = NORTHWEST, LIST=OFF

/ CHANGE _BUS_TYPES,BQ=B,BX=B,BG=BQ,LTC=OFF,AREAS=NORTHWEST,BC-HYDRO
>EXCLUDE_BUSES
B CENTRALA20.0
B BONN PH213.8
B BONNVIL213.8
B DALLES 313.8
B DALLES2113.8
B DALLES2213.8
/ SOLUTION
( END )

In this example, the disabling of remote voltage control is restricted to area NORTHWEST. Within this area, all BG gen-
erators are permanently changed to type BQ; all LTCs are disabled; and all BX buses are frozen to their discrete value.

108 Chapter 2. Contents



Interactive Power Flow

2.6.15 CHANGE_PARAMETERS

/ CHANGE_PARAMETERS, BUS=<name, base>,V=<set_value>,Q=?
VX=<set_value>,QY=?
Q=<set_value>,V=?
QY=<set_value>,QV=?
P=<set_value>,V=?
P=<set_value>,V=?

> BX = LOCKED
B OSTRNDER 500
B MALIN 500

or

/ CHANGE_PARAMETERS, BUS=<name, base),V=?, -
%LOAD_CHANGE,%PY=<##>, %QX=<##, -

%PX=<##>, %QY=<##, -
ZONES=NA, NB, ..., -
OWNERS=BPA, PSP, ..., -
AREAS=NORTHWEST

or

/ CHANGE_PARAMETERS, BUS=<name, base),V=?, -
%GEN_CHANGE,%PY=<##>, %QX=<##, -

%PX=<##>, %QY=<##, -
ZONES=NA, NB, ..., -
OWNERS=BPA, PSP, ..., -
AREAS=NORTHWEST

Note: This is one of the three commands which are order-dependent on the /SOLUTION command (the other two com-
mands are LINE_SENSITIVITIES and LOSS_SENSITIVITIES). Each of these must follow the /SOLUTION command.

The /CHANGE_PARAMETERS command perturbs a specified network parameter immediately after a successful solution,
and initiates a new solution. The process continues until the last /CHANGE_PARAMETERS command has been read. All
changed network parameters are permanent in the base case in residence. The output, analysis, and saved base case
reflecting the final values of the parameters from the last change.

The /CHANGE_ANALYSIS feature is extremely useful to quickly and accurately generate a set of points for plotting Q-V
and P-V curves. When used in conjunction with /USER_ANALYSIS, the values of additional network quantities can be
extracted during each /CHANGE_PARAMETERS, enriching the scope of examination into the network.

The distribution VX, VY, etc., designates both the quantity and the axis on the X-Y data file. Default values (V, Q, etc.)
are shown in Table 4-6.

2.6. Power Flow Control (PFC) 109



Interactive Power Flow

BX = LOCKED

Type BX buses selected with this feature emulate the characteristics of mechanically switched shunt capacitors (MSC)
controlled by a voltage relay. This voltage relay operates within a voltage deadband (𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥):

1. If 𝑉𝑚𝑖𝑛 < 𝑉 < 𝑉𝑚𝑎𝑥, then freeze present 𝑋𝑠ℎ𝑢𝑛𝑡 value.

2. If 𝑉 < 𝑉𝑚𝑖𝑛, switch in additional capacitor steps or switch out connected reactor steps to raise the voltage, one
step at a time.

3. If 𝑉 > 𝑉𝑚𝑖𝑛, switch out connected capacitor steps or switch in additional reactor steps to lower the voltage, one
step at a time.

For exposition, the feature is called BX Locking. In the absence of this feature, the normal operation is to switch
𝑋𝑠ℎ𝑢𝑛𝑡 one step per iteration to bias the bus voltage to 𝑉𝑚𝑎𝑥.

Restrictions on BX Locking

The following restrictions apply to BX locking:

• Only bus type BX buses may be selected for BX locking.

• The feature is limited to a maximum of 10 BX locked buses.

• This feature can be inserted after any / CHANGE_PARAMETERS command. It defines when BX switching on
selected BX buses becomes locked. Once defined, BX locking remains in effect for the duration of the study.

• The voltage limits may be temporarily modified for BX locking. The new voltage limits are entered in columns
(58:65) in the ordinary manner. These limits are temporary. After the solution, the original limits will be used
for analysis reports.

• The BX locking feature is not saved on any generated base case.

Bus Perturbation

Two forms of / CHANGE_PARAMETERS are shown. The first form is bus perturbation. Three types of quantities may be
perturbed:

V = <set_value> Perturbs the Bus voltage magnitude (p.u.).

P = <set_value> Perturbs the 𝑃𝑔𝑒𝑛 (MW).

Q = <set_value> Perturbs the 𝑄𝑔𝑒𝑛 (MVAR).

Restrictions

V-perturbations are applied on V-constrained buses: BQ not at Q-limits, BE and BS types. If the bus type is unacceptable,
it is automatically changed to a type BE and a warning diagnostic is issued.

Q-perturbations are applied on Q-constrained buses: B, BC, BT and BQ in state Q_min or Q_max. If the bus type is
unacceptable, it is automatically changed to a type B and a warning diagnostic is issued.

P-perturbation can only be applied on P-constrained buses: all types except BS, BD, BM, and area slack buses.

110 Chapter 2. Contents



Interactive Power Flow

Load Perturbation

The second form of / CHANGE_PARAMETERS is LOAD perturbation. Either the P_load or the Q_load, or both, may be
perturbed a set percentage.

If no ZONES, OWNERS, or AREAS are specified, the percentage change applies to the entire system.

Note that the %P or %Q quantities in the output file correspond to the load that is changed. It may not be the total
system load.

The inclusion of OWNERS with either ZONES or AREAS select candidates that are mutually inclusive.

Note that continuation records are accepted here.

For best results, the %LOAD_CHANGE option should be used in conjunction with GEN_DROP. Otherwise, all increase in
load is picked up by the area and system slack buses.

Generation Perturbation

The third form of / CHANGE_PARAMETERS is GENERATION perturbation. Either the P_gen or the Q_gen, or both,
may be perturbed a set percentage.

If no ZONES, OWNERS, or AREAS are specified, the percentage change applies to the entire system.

Note that the %P or %Q quantities in the output file correspond to the generation that is changed. It may not be the
total system generation.

The inclusion of OWNERS with either ZONES or AREAS select candidates that are mutually inclusive.

Note that continuation records are accepted here.

For best results, the %GEN_CHANGE option should be used in conjunction with GEN_DROP. Otherwise, all increase in
generation is compensated by the area and system slack buses.

Bus Monitored Quantities

Two types of bus quantities can be monitored:

V = ? Monitors the voltage magnitude.

Q = ? Monitors the reactive allocation including short and unscheduled VARS.

Restrictions apply. V = ? pertains to a BE bus. Q=? pertains to a B bus. Warning diagnostics flag these conditions.

PLOT File

Each / CHANGE_PARAMETERS command generates an x,y plot point in a file with subtype .QVPT.

The composition of these points is dependent upon the composition of the CHANGE_PARAMETERS command. The table
below summarizes the output.

2.6. Power Flow Control (PFC) 111



Interactive Power Flow

Table 2.6.6: CHANGE_PARAMETERS Values in .QVPT File
Set Point Monitored Point X Value Y Value
V=<##> Q=? Q V
Q=<##> V=? Q V
P=<##> Q=? Q P
P=<##> V=? P V
%P=<##> V=? P_Load V
%P=<##> Q=? P_Load Q
%Q=<##> V=? Q_L0ad V
%Q=<##> Q=? Q_Load Q

Each line in the QVPT file is interpreted in the .PFO (power flow output) file.

Example

PLOT POINT 3 X (Q) = #### Y (V) = ####

This statement says point 𝑋3 pertains to 𝑄 and 𝑌3 pertains to 𝑉 .

User Analysis

To circumvent the limitations of monitoring a single bus’s V or Q, additional quantities may be monitored using a
user-defined analysis file defined with the / USER_ANALYSIS command.

The user analysis file is processed for each encountered / CHANGE_PARAMETERS command. Its output is appended
into an output file with subtype .USR_REPORT

Example 1

/ CHANGES,FILE= *
.
/ CHANGE_BUS_TYPES,BQ=B,BQ=BQ,BX=B,LTC=OFF,AREA=NORTHWEST
.
/ SOLUTION
.
/ CHANGE_PARAMETERS, BUS = RAVER 500., VY = 1.065, QX = ?
/ CHANGE_PARAMETERS, BUS = RAVER 500., VY = 1.060, QX = ?
/ CHANGE_PARAMETERS, BUS = RAVER 500., VY = 1.055, QX = ?
.
.
.
/ CHANGE_PARAMETERS, BUS = RAVER 500., VY = 1.000, QX = ?
(END)

In this example, buses in area NORTHWEST with types BQ, BG, and BX were changed to bring about a freeze in volt-
age control. The / SOLUTION command is a dummy command, introduced to illustrate the position of the pure /
CHANGE_PARAMETERS commands. If the bus name following the BUS = keyword has imbedded blanks, insert a pound
sign (#), for example, BELL#BPA.

At the conclusion of an ordinary successful solution, the / CHANGE_PARAMETERS records are processed, one by one.
The first encounter will internally change the bus type of RAVER 500 to BE, if it is another type, and set its voltage
to 𝑉 = 1.065𝑝.𝑢. The perturbation will force a new Newton-Raphson solution. The 𝑄 of RAVER is monitored. Its
perturbed solved values will be printed out.

112 Chapter 2. Contents



Interactive Power Flow

Subsequent / CHANGE_PARAMETERS commands will perform additional perturbations.

Example 2

/ USER_ANALYSIS,FILE=DRB2:[EOFBMJL]USANLINE.DAT
/ CHANGE_BUS_TYPES, BQ=B,BX=B,BG=BQ,LTC=OFF,AREA=NORTHWEST,BC-HYDRO
/ CHANGE,FILE= *
.
. THIS CASE MODELS THE P-V CURVE FOR THE POST TRANSIENT
. CONDITIONS FOLLOWING
. LOSS OF THE COULEE - RAVER #1 500 kV LINE.
. INSTALL LINE DROP COMPENSATORS ON COULEE
. 500 UNITS AND JOHN DAY
. AND ALL DALLES UNITS (EXCEPT 115 kV) AND
. BONNEVILLE (EXCEPT 115 kV)
. AND CENTRALIA AND CHIEF JOE
. 300 MVAR SVC AT KEELER AND MAPLE VALLEY
.
BGM CENTRALA20.0
BGM BONN PH213.8
.
/ GEN_DROP, INIT=75,AREA=NORTHWEST,BC-HYDRO
B LIBBY 13.8, PMIN= 289.2, PMAX=289.2
.
/ SOLUTION
>AI_CONTROL=MON
.
.MONITOR RAVER 500 VOLTAGE AND INCREASE ZONE NA LOAD
.
/ CHANGE_PARAMETERS, BUS = RAVER 500., V = ?

%LOAD_CHANGE %P = 0.5, %Q = 0.5, ZONES = NA
/ CHANGE_PARAMETERS, BUS= RAVER 500., V= ?

%LOAD_CHANGE %P = 0.5, %Q = 0.5, ZONES = NA
/ CHANGE_PARAMETERS, BUS= RAVER 500., V= ?

%LOAD_CHANGE %P = 0.5, %Q = 0.5, ZONES = NA
.
.
(END)

2.6. Power Flow Control (PFC) 113



Interactive Power Flow

Miscellaneous Notes

If the system is severely perturbed, / CHANGE_PARAMETERS will cause divergence. If this happens, it is assumed that
subsequent perturbations will be severe, so divergence will cause them to be ignored. A diagnostic will be issued.

2.6.16 CHANGES

/ CHANGES, FILE = file_name

This command introduces system data change records. Column 3 on all bus, branch, area interchange and area intertie
records contain a change code:

blank Add.

M Modify (non-blank fields are changes).

D Delete.

R Restore (previously deleted, available only on (NEXTCASE) runs).

The following is a list of some specialized change commands.

DA Delete all buses within named areas.

DZ Delete all buses within named zones.

PO, PZ, PN, PA Perform percentage changes according to type.

FILE is optional. If included, records in that file will be processed before any additional change records, which may be
in the input stream.

2.6.17 COMMENT

/ COMMENT

This command introduces comment records into the output report. The comments will appear at the beginning of some
output listings. The /COMMENT command is optional; all C comments in the bpf control file will be processed.

Comment text must have a C in column 1. Up to 20 comment records are permitted. Comment text is put in columns
2-80. Comments are saved in any NEW_BASE file for use when getting a plot.

When bpf loads a base file, any previous comments are deleted, then all comments in the bpf control file are added.
The result is that only the comments in the bpf control file are saved.

2.6.18 COMMON_MODE_ANALYSIS

/COMMON_MODE_ANALYSIS, BASE_FILE = <base_file_name>,
COMMON_MODE = <common_mode_file>,
OUTAGE_FILE = <outage_file>,
OUT_FILE = <output_file>

This command combines features of a common mode file used in the CFLOW program pvcurvewith the output reports
used in the Outage Simulation program, in effect emulating a “slow outage” program. It was written specifically to
accept the pvcurve input file without modification.

The outages, defined as MODE within the script in the COMMON_MODE file, typically consists of a sequence of commands
/CHANGE_BUS_TYPES, /CHANGES, /SOLUTION, and /GEN_DROP. The mode itself is defined by name on a leading
>MODE record; its composition is defined with the change records following a /CHANGES command.

114 Chapter 2. Contents



Interactive Power Flow

At the end of each >MODE set contaiined within the file named in the COMMMON_MODE command, the solution results (or
divergence state) are analyzed: line overloads and bus under/over voltages are written to the user-specified output file
in the same format for the OUTAGE_SIMULATION program.

The capability to restrict the analyzed output to subsystems defined with base kV’s and zones as is now done in the
OUTAGE_SIMULATION program also exists in this feature. That is the purpose of the OUTAGE_FILE. The OUTAGE_FILE
is a bone fide OUTAGE_SIMULATION file which processes only two of its commands: >OVERLOAD and >OUTAGE. All
others are ignored. (The >OUTAGE command is used only if the >OVERLOAD commnad is missing and becomes a clone
of an implied >OVERLOAD command.)

Description of Operation

Three phases are involved.

1. Initialization phase. The /COMMON_MODE_ANALYSIS record is parsed and the relevant input and output files are
opened.

2. The mail loop to process >MODE records. The base case in residence is reloaded and the associated processes
within the >MODE set are processed exactly in the manner performed in the batch powerflow program. At the
conclusion of a solution the output results (line overloads, bus under/over voltages, and any solution divergence)
are tabulated in interrnal arrays.

3. At the conclusion of the last >MODE command, the tabulated results are cross-compiled and outputted exzactly
in the form as is none in the OUTAGE_SIMULATION program.

2.6.19 F_ANALYSIS_RPT

/ F_ANALYSIS_RPT , LEVEL =4 , *
1 ZONES = <list>
2 OWNERS = <list>
3

This command requests that an analysis report for selected zones or owners be added to the microfiche output file. Note
that a separate command [FICHE] must be present in order to save anything on microfiche, regardless of printer and
analysis options selected.

When <list> is blank, asterisk, or null, ALL is assumed unless limited by a preceding statement.

The level number determines the analysis summaries to be displayed.

For LEVEL=1, the following summaries are included:

• User-defined analysis (optional).

• Buses with unscheduled reactive.

For LEVEL=2, the following are displayed with summaries for LEVEL=1:

• Total system generations and loads by owner.

• System generations, loads, losses and shunts by zones.

• Undervoltage-overvoltage buses.

• Transmission lines loaded above XX.X% of ratings.

• Transformers loaded above XX.X% of ratings.

• Transformer excited above 5% over tap.

• Transmission system losses.

2.6. Power Flow Control (PFC) 115



Interactive Power Flow

• BPA industrial loads.

• dc system.

• Shunt reactive summary.

• Summary of LTC transformers.

• Summary of phase-shifters.

• Summary of %Var-controlled buses.

• Summary of type BX buses.

• Summary of adjustable Var compensation.

• Transmission lines containing series compensation.

For LEVEL=3, the following is displayed in addition to the LEVEL=2 output:

• Bus quantities.

For LEVEL=4, the following are displayed in addition to the LEVEL=3 display:

• Spinning reserves.

• Transmission line efficiency analysis. Lines loaded above XX.X% of nominal ratings.

• Transformer efficiency analysis. Total losses above X.XX% of nominal ratings.

• Transformer efficiency analysis. Core losses above X.XX% of nominal ratings.

Example

/ F_ANALYSIS_RPT, LEVEL=4, OWNERS= BPA,PGE,PPL,WPS
/ P_ANALYSIS_RPT, LEVEL=1, ZONES = NA, NB, NC
/ F_ANALYSIS_RPT, LEVEL=4, *
/ P_ANALYSIS_RPT, LEVEL=1, ZONES = *

2.6.20 F_INPUT_LIST

/ F_INPUT_LIST, FULL, ERRORS = NO_LIST
NONE LIST
ZONES = <list>
ZONES = ALL, FULL or NONE

This command lists input data on FICHE. Output can be restricted to individual zones specified in <list> and separated
with commas. Note that FULL or NONE may be specified in two forms.

The ERRORS option is set to suppress the input fiche if any fatal (F) errors are encountered. This is the default. It can
be overridden by setting ERRORS = LIST.

116 Chapter 2. Contents



Interactive Power Flow

2.6.21 F_OUTPUT_LIST

/ F_OUTPUT_LIST, FULL, FAILED_SOL = FULL_LIST
NONE PARTIAL_LIST
ZONES = <list> NO_LIST
ZONES = ALL, FULL or NONE

This command lists output on FICHE. Output can be restricted to individual zones specified in <list> which are
separated with commas. Note that FULL or NONE may be specified in two forms.

The FAILED_SOL option is set to override the output listing if a failed solution occurs. It defaults to a full listing. A
PARTIAL_LIST observes zone lists.

2.6.22 GEN_DROP

/ GEN_DROP, ..., INITIAL_DROP=#### ...

This feature picks up generation from selected generators to balance generation drop. Generation is dropped in one of
two ways:

• By system changes with the amount specified under INITIAL_DROP.

• By PMIN and PMAX limits on selected generators. (These buses are specified with specially formatted B records
which follow.)

Generator dropping emulates the short-term characteristics of a system’s response where the generation deficit is au-
tomatically picked by other machines. The magnitude is presumed to be proportional to PMAX after the effects of the
machine’s transients have damped out.

Candidate generators that pickup are those in the area of interest with a spinning reserve (a surplus of 𝑃𝑚𝑎𝑥 over 𝑃𝑔𝑒𝑛).
The pickup of an eligible machine “i” is allocated proportionally by the ratio

𝐺𝐸𝑁_𝑃𝐼𝐶𝐾𝑈𝑃 (𝑖) = 𝑃𝑚𝑎𝑥(𝑖) * (𝑇𝑂𝑇𝐴𝐿𝐷𝑅𝑂𝑃𝑃𝐸𝐷/𝑇𝑂𝑇𝐴𝐿𝑃𝑀𝐴𝑋)

where 𝑇𝑂𝑇𝐴𝐿𝐷𝑅𝑂𝑃𝑃𝐸𝐷 is the sum of dropped MW, and 𝑇𝑂𝑇𝐴𝐿𝑃𝑀𝐴𝑋 is the sum of all candidate machines
with spinning reserve.

Some machines may be driven to their 𝑃𝑚𝑎𝑥 limits during reallocation. In this case, the allocation becomes nonlinear
and several iterations may be required. A detailed list of each command follows.:

/ GEN_DROP, AI_CONTROL=CON, INITIAL_DROP= ####, TOL=####,
MON
OFF

AREAS=<area_1,...> Optional. Do not use with ZONE.
ZONES=<zone_1,...> Optional. Do not use with AREA.

Note that continuation records are acceptable here.

The individual fields of the GEN_DROP command follow.

2.6. Power Flow Control (PFC) 117



Interactive Power Flow

Area Interchange Control

If generation dropping and allocation occurs over several areas, intertie flows may be substantially affected, and it is
recommended to change the area interchange from control to monitor unless the new interchange schedule is known.:

AI_CONTROL = CON : Control area interchange.
OFF : Turn off area interchange.
MON : Monitor area interchange.

Note: One other command also affects area interchange control, the >AI_CONTROL option on the /SOLUTION record.
If this follows the /GEN_DROP command above, it may overwrite the selected option.

Initial Dropped Generation

This is necessary if the dropped generators are deleted or modified in a change case.

INITIAL_DROP = ####

The field #### denotes the numerical values in MW.

Initial dropped generation may be specified in an alternate method, called the “computed dropped generation.”

Tolerance

Generation reallocation continues until the mismatch between generation dropped and generation pickup is less than
the tolerance. The default value is 10 MW.

TOL = ####

The field #### denotes the numerical values in MW.

Areas or Zones

The generation to be picked up may be either system-wide (the default) or restricted to a set of areas or zones.

AREAS = <area_1,...>

or

ZONES = <zone_1,...>

The individual areas are separated with a comma (,). If the area name contains a blank, temporarily replace the blank
field with a pound sign (#). Continuation records may be employed for aesthetics.

For example,:

AREAS =NORTHWEST, -
BC-HYDRO, -
IDAHO, -
MONTANA, -
TRANSALTA, -
WKOOTENA

118 Chapter 2. Contents



Interactive Power Flow

Exclude Buses

Means are available to contract the system or subsystem defined in the /GEN_DROP command. Individual buses may
be excluded from participating in generator pick-up. These buses are selected with the following command:

>EXCLUDE_BUS
B name base
B name base

Selected Generators To Be Dropped

The amount of generation is defined as the sum of INITIAL_DROP plus the computed generation to be dropped. The
computed generation drop is the amount of violation of P-limits on all specified buses:

PMIN < PGEN < PMAX

Obviously, only area and slack buses and AGC candidates permit the P-generation to change. Limits can be placed on
these buses by specifying a + or - tolerance, or a PMIN and PMAX (in MWs). PMIN keeps slack buses within a narrow
range. The special B records introduce these limits explicitly. This is illustrated with the following example:

B MORRO 4 18.0, TOL = 20
B MORRO 4 18.0, PMIN = 147, PMAX = 167

If the key words PTOL, PMIN, or PMAX are omitted, PMAX is taken from the PMAX field on the original or changed bus
data record. Recall that on the bus record there is no corresponding field for PMIN. Consequently, PMIN = 0.0. At least
one B record must be present.

Example

( POWERFLOW, ...)
...
...
/ CHANGES, ...
...
... (changes which drop 2450 MW of generation in the Northwest)
...
/ GEN_DROP, AI_CONTROL=MON, TOL=1.0, INIT=2450
BX MORRO 4 18, PMIN = 147, PMAX = 167
/ SOLUTION
( END )

Note: MORRO 4 is held between 147 and 167 MWs. Dropping 2450 MWs and picking it up elsewhere will change
the generation flows and, quite likely, will alter the system losses. The system slack bus accommodates these changes
in losses.

2.6. Power Flow Control (PFC) 119



Interactive Power Flow

2.6.23 HEADER

/ HEADER

This command introduces one or two header records into the pagination. Its text will be repeated on the top of each
page in the output report. Each header record begins with an H in column 1. It is used to supply the lines of text that
will be printed at the top of every page of an output listing, below the standard header1, which contains the caseid,
project, program version, and date. These header records are saved in the base case file, and any previous headers are
deleted. This is similar to the /COMMENT command.

Fig. 2.6.3: Header Comment Input Format

2.6.24 INCLUDE_CONTROL

/ INCLUDE_CONTROL, file = <filespec>

This command permits the input stream containing commands to be temporarily diverted to the named file. Following
an end-of-file, control reverts to the normal input stream. Some restrictions apply. This “included” command file
cannot contain any of the following commands:

/ INCLUDE_CON statement

/ MERGE_BASE statement

/ OUTAGE_SIM statement

/ REDUCTION statement

/ CHANGES statement

120 Chapter 2. Contents



Interactive Power Flow

2.6.25 LINE_EFF

/ LINE_EFF, LOADING = <nn>, OWNERS = <list>

Use this command to list lines that are loaded above the prescribed LOADING. The output can be filtered by owners.
BPA is the default if no owners are specified.

2.6.26 LINE_SENSITIVITIES

/ LINE_SENSITIVITIES

Note: Three commands are dependent on the SOLUTION command. The commands are CHANGE_PARAMETERS,
LINE_SENSITIVITIES, and LOSS_SENSITIVITIES. These three work correctly only if they immediately follow the
SOLUTION command.

Line sensitivities relate line immittances (impedance or admittance) to voltage, real power flow, and system losses. Six
types are available.

𝑑
𝑃𝑖𝑗

𝑑𝑋𝑡
Change in lineflow 𝑃𝑖𝑗 with respect to change in transfer reactance 𝑋𝑡 .

𝑑
𝑃𝑖𝑗

𝑑𝐵𝑠
Change in lineflow 𝑃𝑖𝑗 with respect to change in shunt susceptance 𝐵𝑠 .

𝑑𝐿𝑜𝑠𝑠
𝑑𝑋𝑡

Change in system losses with respect to a change in transfer reactance 𝑋𝑡 .

𝑑𝐿𝑜𝑠𝑠
𝑑𝐵𝑠

Change in system losses with respect to a change in shunt susceptance 𝐵𝑠 .

𝑑 𝑉𝑖

𝑑𝑋𝑡
Change in bus voltage (𝑉𝑖) with respect to a change in transfer reactance 𝑋𝑡.

𝑑 𝑉𝑖

𝑑𝐵𝑠
Change in bus voltage (𝑉𝑖) with respect to a change in shunt susceptance 𝐵𝑠 .

The change in transfer reactance 𝑋𝑡 or shunt susceptance 𝐵𝑠 pertains to an existing line. The command statement
which invokes line sensitivities is:

/ LINE_SENSITIVITIES, LTC =ON, AI_CONTROL = CON
OFF MON

OFF

The top line depicts default quantities. The options LTC and AI_CONTROL pertain to LTC transformers and area inter-
change control.

The second part of the sensitivities is the perturbed quantities 𝑑𝑋𝑡 or 𝑑𝐵𝑠. They are defined with specially formatted
> records and are similar to L records.

2.6. Power Flow Control (PFC) 121



Interactive Power Flow

Table 2.6.7: Line Sensitivities
Columns Format Description
(1:3) A3 >PB: 𝑑𝑃𝑖𝑗

𝑑𝐵𝑠
or 𝑑𝑃𝑖𝑗

𝑑𝑋𝑡
>LB: 𝑑𝐿𝑜𝑠𝑠

𝑑𝐵𝑠
or

𝑑𝐿𝑜𝑠𝑠
𝑑𝑋𝑡

>VB: 𝑑𝑉𝑖

𝑑𝐵𝑠
or 𝑑𝑉𝑖

𝑑𝑋𝑡

(7:18) A8,F4.0 Bus1 name and base kV
(20:31) A8,F4.0 Bus2 name and base kV

(32)
A1 Circuit ID

(33)
I1 Section number

(45:50) F6.5 Perturbed 𝑋𝑡

(57:62) F6.5 Perturbed 𝐵𝑠

A maximum of 50 perturbed quantity > records may be present.

The ambiguity 𝑑(.)/𝑑𝐵𝑠 or 𝑑(.)/𝑑𝑋𝑡 is resolved by non-zero entities for 𝑋𝑡 or 𝐵𝑠 . If both are zero, the default is 𝑋𝑡

. Non-zero entities define the magnitude of the perturbed quantity 𝐷𝑒𝑙𝑡𝑎𝑋𝑡 or 𝐷𝑒𝑙𝑡𝑎𝐵𝑠. Perturbed flows, losses, or
voltages will be computed using these values.

The perturbed branch flows 𝑃𝑖𝑗 are identified with the individual L records that follow. If parallel lines are present, 𝑃𝑖𝑗

pertains to the total of all parallel flows.

The perturbed voltages are the 20 largest excursions effected by the change in immittance. The perturbed losses are a
simple quantity. An example setup follows:

( POWERFLOW, ...)
...
...
...
/ SOLUTION
...
...
...
/ LINE_SENSITIVITIES, AI_CONTROL=ON, LTC=ON
>PB RAVER 500 TACOMA 500
L RAVER 500 TACOMA 500
L GRIZZLY 500 JOHN DAY 500
L GRIZZLY 500 MALIN 500
L HANFORD 500 JOHN DAY 500
L HANFORD 500 LOW MON 500
L HANFORD 500 OSTRNDER 500
L HANFORD 500 VANTAGE 500
>LB RAVER 500 TACOMA 500
>VB RAVER 500 TACOMA 500
>PB GRIZZLY 500 JOHN DAY 500
L RAVER 500 TACOMA 500
L GRIZZLY 500 JOHN DAY 500
L GRIZZLY 500 MALIN 500
L HANFORD 500 JOHN DAY 500
L HANFORD 500 LOW MON 500
L HANFORD 500 OSTRNDER 500
L HANFORD 500 VANTAGE 500

(continues on next page)

122 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

( STOP )

Notes

The first perturbation >PB with blank 𝑋𝑡 and 𝐵𝑠 fields requests 𝑑𝑃𝑖𝑗

𝑑𝑋𝑡
(the default). The individual 𝑃𝑖𝑗 records.

The second perturbation >LB with blank 𝑋𝑡 and 𝐵𝑠 fields requests 𝑑𝐿𝑜𝑠𝑠
𝑑𝑋𝑡

(the default). No L records follow because
the monitored quantities are system losses.

The third perturbation >VB with blank 𝑋𝑡 and 𝐵𝑠 fields requests 𝑑𝑉𝑖

𝑑𝑋𝑡
(the default). No L records follow because the

monitored quantities are perturbed voltages. The 20 largest excursions are listed.

Sample Deck Set-up

(POWERFLOW,...)
. . .
/ CHANGES
. . .
/ SOLUTION
. . .
/ BUS_SENSITIVITIES,LTC=ON,AI_CON=ON,Q_GEN=ON,Q_SHUNT=ON
B SATSUP 230 -172
B OLYMPIA 230 -172
/ BUS_SENSITIVITIES,LTC=OFF,AI_CON=OFF,Q_GEN=ON,Q_SHUNT=FIXED
B SATSUP 230 -172
B OLYMPIA 230 -172
(END)

2.6.27 %LOAD_DISTRIBUTION

/ %LOAD_DISTRIBUTION, DISTRIBUTED_VOLTAGE = NOMINAL_BASE

This set of commands automatically converts constant power, constant current, or constant impedance loads to a user-
specified distribution of constant MVA, constant current, and constant impedance.

The option DISTRIBUTED_VOLTAGE (or DIST for abbreviated form) selects either NOMINAL (all voltages are 1.0 p.u.)
or BASE, which is the individual bus’s voltage.

Constant Current and Impedance Loads

Constant current loads and constant impedance loads are defined by continuation bus (+) records using reserved TYPE
s and CODE_YR s. Constant impedance loads differ from 𝐺𝑠ℎ𝑢𝑛𝑡 and 𝐵𝑠ℎ𝑢𝑛𝑡 quantities in the sense that these quantities
are converted into loads and appear in special analysis summaries. The table below describes these special codes and
their interpretations.

2.6. Power Flow Control (PFC) 123



Interactive Power Flow

Table 2.6.8: Special Continuation Bus Types
Type Owner CODE_YR P_LOAD Q_LOAD G_SHUNT B_SHUNT
+A 𝐵𝑥𝑒𝑑 a
+A 00 𝐵𝑥𝑒𝑑

+A 01 𝑃 (𝐼) b 𝑄(𝐼) c 𝑃 (𝐺) d 𝑄(𝐵) e
+A 01 𝑃 (𝐼) 𝑄(𝐼) 𝐺𝑒𝑞𝑢𝑖𝑣 f 𝐵𝑒𝑞𝑢𝑖𝑣 g
+A 02 *I *P 𝑃 (𝐼) 𝑄(𝐼) 𝑃 (𝐺) 𝑃 (𝐺) 𝑃 (𝐺) 𝑄(𝐵) 𝑄(𝐵) 𝑄(𝐵)

a. 𝐵𝑥𝑒𝑑 = Shunt is pi_back shunt impedance from / CUTTING.

b. 𝑃 (𝐼) = Power is a function of current (constant current).

c. 𝑄(𝐼) = Reactive is a function of current (constant current).

d. 𝑃 (𝐺) = Power is a function of shunt 𝐺 (constant impedance).

e. 𝑄(𝐵) = Reactive is a function of shunt 𝐵 (constant impedance).

f. 𝐺𝑒𝑞𝑢𝑖𝑣 = Shunt is equivalent shunt impedance from / REDUCTION.

g. 𝐵𝑒𝑞𝑢𝑖𝑣 = Shunt is equivalent shunt impedance from / REDUCTION.

Description of Constant Current Load Model

For expositional purposes, we will call constant current 𝐴𝑙𝑜𝑎𝑑 and 𝐵𝑙𝑜𝑎𝑑. This nomenclature is consistent with the
expression for complex current:

𝐼 = 𝐴+ 𝑗𝐵

The power at a constant current load is computed with the expression

𝑃𝑙𝑜𝑎𝑑 + 𝑗𝑄𝑙𝑜𝑎𝑑 = 𝑐𝑜𝑚𝑝𝑙𝑥(𝑉 ) * 𝑐𝑜𝑛𝑗𝑔(𝐼)

where 𝑐𝑜𝑚𝑝𝑙𝑥(𝑉 ) is the complex voltage and 𝑐𝑜𝑛𝑗𝑔(𝐼) is the conjugate of the complex current. The use of the
conjugate expression is needlessly complicated for this simple application and has been relaxed. The quantity Bload
is stored as its conjugate, that is, no sign reversal is needed to interpret the correct sign of the load in MVAR.

Let 𝑉 denote the per unit base or nominal voltage magnitude - depending upon the option DISTRIBUTED_VOLTAGE.
The distributed constant current loads in MW and MVAR are computed as follows:

𝑃𝑙𝑜𝑎𝑑 = 𝐴𝑙𝑜𝑎𝑑 * 𝑉
𝑄𝑙𝑜𝑎𝑑 = 𝐵𝑙𝑜𝑎𝑑 * 𝑉

Readers may note that this is not true constant current. True constant current loads involve the system phase angle. The
modelling here is more lenient: it is constant power factor.

Description of Distribution Factors

Six percentage distribution factors can be specified by the user. The following example illustrates the relation.

𝑃𝑙𝑜𝑎𝑑 = 50𝑄𝑙𝑜𝑎𝑑

= 50
𝐹𝑟𝑜𝑚𝑡ℎ𝑖𝑠𝑐𝑜𝑚𝑚𝑎𝑛𝑑, 𝑡ℎ𝑒𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝑤𝑖𝑙𝑙𝑏𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 :

There are restrictions; the percentage distributions must be complete.

𝑃𝑃 + 𝑃𝐼 + 𝑃𝑍 = 100.0

𝑄𝑃 +𝑄𝐼 +𝑄𝑍 = 100.0

124 Chapter 2. Contents



Interactive Power Flow

This means that if some load is to be unchanged, a value of 100% must be entered for 𝑃𝑙𝑜𝑎𝑑 or 𝑄𝑙𝑜𝑎𝑑.

The following relations hold at the base voltages:

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑀𝑉 𝐴𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑀𝑉 𝐴𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐼𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑍

𝑃𝑙𝑜𝑎𝑑𝑜𝑙𝑑
= 𝑃𝑙𝑜𝑎𝑑𝑛𝑒𝑤

+𝐴𝑙𝑜𝑎𝑑 * 𝑉 +𝐺𝑠ℎ𝑢𝑛𝑡 * 𝑉 2

𝑄𝑙𝑜𝑎𝑑𝑜𝑙𝑑
= 𝑄𝑙𝑜𝑎𝑑𝑛𝑒𝑤 +𝐵𝑙𝑜𝑎𝑑 * 𝑉 −𝐵𝑠ℎ𝑢𝑛𝑡 * 𝑉 2

where

𝑃𝑙𝑜𝑎𝑑𝑛𝑒𝑤 (MW) = 𝑃𝑙𝑜𝑎𝑑𝑜𝑙𝑑
(MW) *𝑃𝑃/100

𝑄𝑙𝑜𝑎𝑑𝑛𝑒𝑤
(MVAR) = 𝑄𝑙𝑜𝑎𝑑𝑜𝑙𝑑

(MVAR) *𝑄𝑃/100

𝐴𝑙𝑜𝑎𝑑 (MW) = 𝑃𝑙𝑜𝑎𝑑𝑜𝑙𝑑
(MW) *𝑃𝐼/(100 * 𝑉 )

𝐵𝑙𝑜𝑎𝑑 (MVAR) = 𝑄𝑙𝑜𝑎𝑑𝑜𝑙𝑑
(MVAR) *𝑄𝐼/(100 * 𝑉 )

𝐺𝑠ℎ𝑢𝑛𝑡 (MW) = 𝑃𝑙𝑜𝑎𝑑𝑜𝑙𝑑
(MW) *𝑃𝑍/(100 * 𝑉 2)

𝐵𝑠ℎ𝑢𝑛𝑡 (MVAR) = −−𝑄𝑙𝑜𝑎𝑑𝑜𝑙𝑑
(MVAR) *𝑄𝑍/(100 * 𝑉 2)

The negative sign for 𝐵𝑠ℎ𝑢𝑛𝑡 is correct. The actual expression is

𝑃 + 𝑗𝑄 = 𝑐𝑜𝑛𝑗𝑔(𝑌 ) * 𝑉 2

A positive value of 𝐺𝑠ℎ𝑢𝑛𝑡 is the same sign as load; a positive value of Bshunt is the same sign as generation.

Those buses whose loads can be distributed can be selected either individually or systematically. Individually se-
lected buses require the > CHANGE_BUSES command. Systematically selected buses require the > CHANGE_SYSTEM
command.

Systematically Selected Buses

> CHANGE_SYSTEM, PLOAD = ##% P + ##% I + ##% Z,
QLOAD = ##% Q + ##% I + ##% Z,
AREAS = area_1. ...,
ZONES = zones_1, ...,
OWNERS = owner_1,

> EXCLUDE_BUSES
B name base
B name base
B name base

This example redistributes constant power loads according to the specified percentages.

The redistributed constant current and constant impedance loads are transferred to a new +A01 continuation bus record.
The redistributed constant power loads replace the original constant power load.

A special feature has been added to redistribute constant current and constant impedance loads that already have been
distributed. As such, these loads are restricted to +A01 and +A02 continuation bus records. The table below describes
these options.

Table 2.6.9: Constant Power, Current, and Impedance Keywords
Type of Load to Convert Keyword for Real Part Keyword for Reactive Part
Constant Power PLOAD = QLOAD =
Constant Current ALOAD = BLOAD =
Constant Impedance RLOAD = XLOAD =

2.6. Power Flow Control (PFC) 125



Interactive Power Flow

For example, to change constant current loads, the following commands are used:

> CHANGE_SYSTEM, ALOAD = ##% P + ##% I + ##% Z,
BLOAD = ##% Q + ##% I + ##% Z,

The network affected by the specified load change percentages can be restricted to buses within a given subsystem.
This subsystem can be defined by those buses having common attributes in two sets:

{ AREAS, OWNERS }

or:

{ ZONES, OWNERS }

ZONES and AREAS are mutually exclusive; only one of the above can be specified.

If no owners are specified, all ownerships are implied. The selected subsystem can be further defined by excluding
specific bases with the >EXCLUDE option.

More than one set of CHANGE_SYSTEM commands is permitted. This would permit buses in different areas or zones to
have different percentage distribution factors. In case of overlap, precedence is given to the first definition.

Individually Selected Buses

> CHANGE_BUSES, CHANGE_TYPE = PLOAD
ALOAD
RLOAD

B ownname base #### #### #### #### #### #### PLOAD
B ownname base #### #### #### #### #### #### ALOAD
+x ownname base yr #### #### #### #### #### ####
+x ownname base yr #### #### #### #### #### ####

This command permits unique distribution factors to be specified for individual buses. The buses and their distribution
factors are identified on fixed field records. The format of the B % load change record is shown in the figure below.
CHANGE_TYPE is optional. ALOAD and RLOAD have the same interpretation given in Table 4-8. Thus, they would apply
to + records, but not to B records.

If the ownership field is blank or includes the bus ownership, the percentages apply only to data on the bus B record.
Continuation bus data will not be affected.

On the other hand, if the ownership is the magic code ###, the percentages apply to data on the bus B record and also
to data on all associated continuation bus records.

If separate % changes are to apply to bus and continuation bus records, separate + % change records must be used—one
for the bus B record and others for the specific + bus records.

The identification fields for + % bus records are identical to those for the + records as in the table below.

Table 2.6.10: Identification Fields for +% Records
Column Quantity
1 •

2 Type
3- 6 Ownership
7-18 Bus Name and Base kV
19-20 Code Year

126 Chapter 2. Contents



Interactive Power Flow

Fig. 2.6.4: CHANGE_BUS % Load Input Format for B Records

The format of the + % load change records is shown below.

Fig. 2.6.5: CHANGE_BUS % Load Input Format for + Records

Wildcards are permitted in these fields: TYPE, OWNER, and CODE_YR. The wild card character(s) for those fields are #,
###, and ## respectively.

The percentages apply to the distribution of QLOAD and PLOAD to ALOAD and BLOAD, or to RLOAD and XLOAD. They
must total 100% each.

If an overlap occurs with the CHANGE_SYSTEM command, precedence is given to the individually specified buses.

A maximum of 2,000 buses may be specified. Once identified, that bus will be unaffected by any subsequent commands.

2.6. Power Flow Control (PFC) 127



Interactive Power Flow

Example 1

PLOAD, QLOAD distributions applied to a bus record. See figure below.:

PLOAD = % PL + % PI + % PZ
QLOAD = % QL + % QI + % QZ

Fig. 2.6.6: Original B Record

1. Remove PLOAD and QLOAD quantities from bus record above.

2. Calculate the following quantities

P1 = PLOAD * %PL
Q1 = QLOAD * %QL
P2 = PLOAD * %PI / VOLTAGE
Q2 = QLOAD * %QI / VOLTAGE
P3 = PLOAD * %PZ / VOLTAGE ** 2
Q3 = QLOAD * %QZ / VOLTAGE ** 2

3. Replace the load and shunt fields on the B record and on a new +A*I record.

Modified B record and new +A*I record. See below.

Fig. 2.6.7: Modified B Record

128 Chapter 2. Contents



Interactive Power Flow

Example 2

ALOAD, BLOAD distributions applied on a +X*P bus record.:

ALOAD = %PL + %PI + %PZ
BLOAD = %QL + %QI + %QZ

Note that ALOAD and BLOAD quantities are generated by prior %LOAD_DISTRIBUTION. Thus, this record corresponds
to a + record having the same TYPE and CODE_YEAR. See below.

Fig. 2.6.8: Original Continuation Record

1. Remove ALOAD and BLOAD quantities from the +X*I record above. Note that these quantities are constant current.
Convert them into constant power:

PLOAD = ALOAD * %PL VOLTAGE QLOAD = BLOAD * %PL VOLTAGE

2. Calculate the following quantities:

P1 = PLOAD * %PL Q1 = QLOAD * %QL P2 = PLOAD * %PI / VOLTAGE Q2 = QLOAD * %QI /
VOLTAGE P3 = PLOAD * %PZ / VOLTAGE ** 2 Q3 = QLOAD * %QZ / VOLTAGE ** 2

3. Replace the load and shunt fields on the original + record and the load fields on the original type +X record.

Modified +X*I record and new +A*P record. See below.

Fig. 2.6.9: Modified Continuation Record

2.6. Power Flow Control (PFC) 129



Interactive Power Flow

Limitations, Restrictions, and Assumptions

The load distribution is presumed to apply to a solved base case. At the base solution, the total load in MWs and
MVARs is unchanged after distribution. If the system is not otherwise changed, the solution should converge to the
base solution.

Each nonzero load on a bus or continuation bus record generates an associated constant current and constant impedance
load on an equivalent +A*I continuation bus record. The continuation bus array is currently dimensioned for 3360
records.

The number of generated +*I and +*P records in a typical base case averages 400 (assuming one for each continuation
bus) plus one for each number of nonzero load on the bus records.

BPA’s Transient Stability Program in its present form cannot accommodate the Powerflow model of constant current
loads.

2.6.28 LOAD_GE

/LOAD_GE, FILE=<file_name>

This command imports an ASCII coded GE-formatted network data file

LOAD_GE qualiers

REFFILE=<reference_file_name>

This qualifier introduces a reference base case from which to derive missing ownership and mileage information. The
GE data set is potentially richer in content than IPF’s base data file, but maybe incomplete if some optional data fields
such as mileage or ownerships are omitted.

VERSION=<nnn>

This qualifier defines the version number of the input data. At present, only version 21 is recognized.

RATINGS=(TX=AABC, LN=AAC)

This option correlates the various GE branch ratings with the IPF branch ratings. Four GE transformer ratings (RATEA,
RATEB, RATEC, RATED) can be assigned independently to the IPF transformer ratings in the following order –
Nominal, Thermal, Emergenty, and Bottleneck, Simarily, three GE line ratings (RATEA, RATEB, RATEC) can be
assigned independently to the IPF line ratings in the following order – Nominal, Thermal, and Bottleneck.

The default branch IPF ratings, shown in the example above, are assigned per the table below.

This option defines the remotely controlled bus’ voltage assignments in the form of bus type and scheduled voltage.
The table below describes all options

Table 2.6.11: Remotely controlled bus assigned voltages
Type Conditional bus

type
Action taken

HIGH vmax = vmax_ge vmin = vmax_ge Bb -> BT
AVER-
AGE

vmax = 0.5 * (vmax_ge + vmin_ge) vmin = 0.5 * (vmax_ge + vmin_ge) Bb
-> BT

LOW BQ vmax = 0.5 * (vmax_ge + vmin_ge) vmin = 0.5 * (vmax_ge + vmin_ge)T
LOW All other types vmax = vmax_ge vmin = vmin_ge
RANGE Bb vmax = vmax_ge vmin = vmin_ge
RANGE All other types vmax = 0.5 * (vmax_ge + vmin_ge) vmin = 0.5 * (vmax_ge + vmin_ge)

130 Chapter 2. Contents



Interactive Power Flow

2.6.29 LOAD_PTI

/LOAD_GE, FILE=<file_name>

This command imports an ASCII coded PTI-formatted network data file

LOAD_PTI qualiers

REFFILE=<reference_file_name>

This qualifier introduces a reference base case from which to derive missing ownership and mileage information.

VERSION=<nnn>

This qualifier defines the version number of the input data. At present, only version 3 and 4 are recognized.

RATINGS=(TX=AABC, LN=AAC)

This option correlates the various PTI branch ratings with the IPF branch ratings. Four PTI transformer ratings
(RATEA, RATEB, RATEC, RATED) can be assigned independently to the IPF transformer ratings in the following
order – Nominal, Thermal, Emergenty, and Bottleneck, Simarily, three PTI line ratings (RATEA, RATEB, RATEC)
can be assigned independently to the IPF line ratings in the following order – Nominal, Thermal, and Bottleneck.

The default branch IPF ratings, shown in the example above, are assigned per the table below.

This option defines the remotely controlled bus’ voltage assignments in the form of bus type and scheduled voltage.
The table below describes all options.

Table 2.6.12: Remotely controlled bus assigned voltages
Type Conditional bus

type
Action taken

HIGH vmax = vmax_pti vmin = vmax_pti Bb -> BT
AVER-
AGE

vmax = 0.5 * (vmax_pti + vmin_pti) vmin = 0.5 * (vmax_pti + vmin_pti) Bb
-> BT

LOW vmax = vmin_pti vmin = vmin_pti Bb -> BT
RANGE Bb vmax = 0.5 * (vmax_pti + vmin_pti) vmin = 0.5 * (vmax_pti + vmin_pti)
RANGE All other types vmax = 0.5 * (vmax_pti + vmin_pti) vmin = 0.5 * (vmax_pti + vmin_pti)

2.6.30 LOSS_SENSITIVITIES

/ LOSS_SENSITIVITIES

Note: Three commands are dependent on the SOLUTION command. The commands are CHANGE_PARAMETERS,
LINE_SENSITIVITIES, and LOSS_SENSITIVITIES. These three work correctly only if they immediately follow the
SOLUTION command.

This feature provides valuable information concerning system losses with respect to scheduled active and reactive
generation or loads, and to scheduled voltages. The command statement that invokes loss sensitivities is:

/ LOSS_SENSITIVITIES,LTC=ON, AI_CONTROL=CON, Q_SHUNT=ADJ,
OFF, OFF FIXED

QGEN=ADJ,
FIXED

(continues on next page)

2.6. Power Flow Control (PFC) 131



Interactive Power Flow

(continued from previous page)

AREAS=<area1,area2,...>,
ZONES=<zone1,...>

The top line depicts default quantities. The options LTC, AI_CONTROL, and Q_SHUNT pertain to LTC transformers, area
interchange control, and 𝐵𝑠ℎ𝑢𝑛𝑡 on type BQ buses.

Three loss sensitivities are computed: 𝑑𝐿𝑜𝑠𝑠
𝑑𝑃𝑖

, 𝑑𝐿𝑜𝑠𝑠
𝑑𝑄𝑖

, and 𝑑𝐿𝑜𝑠𝑠
𝑑𝑉𝑖

.

These sensitivity computations are linearized about the solved case. For small changes, the sensitivities are extremely
accurate. For larger changes, non-linearities redefine the problem. A rule of thumb is that the sensitivities are suffi-
ciently accurate for a 0.5 per unit (p.u.) change in 𝑃𝑖 or 𝑄𝑖, and a 0.01 p.u. change in 𝑉𝑖.

Each sensitivity relates changes in the system losses to a hypothetical change of 1.0 p.u. in scheduled active generation
𝑃𝑖, reactive generation 𝑄𝑖, or voltage 𝑉𝑖.

Ordinarily, a decrease in system losses is anticipated when 𝑃𝑖, 𝑄𝑖, or 𝑉𝑖 increases, that is, a negative loss sensitivity.

𝑑𝐿𝑜𝑠𝑠
𝑑𝑃𝑖

An exception often occurs for 𝑑𝐿𝑜𝑠𝑠
𝑑𝑃𝑖

. Occasionally, 𝑑𝐿𝑜𝑠𝑠
𝑑𝑃𝑖

> 0, that is, increasing the generation𝑃𝑖 increases the losses!

Recall the constraint for Area_i:

Area export = Area generation - Area load - Area losses

(Any active bus shunt 𝐺 is presumed to be accounted for in area losses.)

Within each area, the generation on the slack bus is adjustable and on all other generators is fixed. Thus, a change of
1.0 p.u. on generator “i” causes two changes in the area slack bus:

• An immediate transfer of -1.0 p.u. to balance the change in generation.

• An additional change to reflect the change in system losses, which are affected by the 1.0 p.u. generation transfer.

Note that the system slack bus or area interchange slack bus must pick up any deficit generation needed to supply loads
and system losses. Thus, the sensitivity reflects the change in losses if 1.0 p.u. MW of generation is moved from bus
“i” to the system or area slack bus. If the system or area slack bus is closer to the load center, the losses will decrease
with the reallocation. Consequently, 𝑑𝐿𝑜𝑠𝑠

𝐷𝑃𝑖
< 0. Otherwise, the losses will increase.

𝑑𝐿𝑜𝑠𝑠
𝑑𝑄𝑖

A change in reactive generation is quite different from a change in active generation. Changes in reactive generation
strongly affect the voltage profile of the system adjacent to bus “i”. Thus, a change in losses is due primarily to the
change in voltage profile.

132 Chapter 2. Contents



Interactive Power Flow

𝑑𝐿𝑜𝑠𝑠
𝑑𝑉𝑖

A change in scheduled voltage for types BE, BS, BQ, or BG buses directly affects the voltage profile of the system adjacent
to bus “i”. Thus, the change in voltages directly affects system losses. In general, higher voltages are accompanied with
lower branch currents and hence, lower line losses. Exceptions may occur in cables where large amounts of inductive
shunt are necessary to compensate for the capacitance in cable.

2.6.31 MERGE_OLD_BASE and MERGE_NEW_BASE

/ MERGE_OLD_BASE and / MERGE_NEW_BASE

These subprocesses extract a subsystem from an old base file and merge it with another subsystem to generate a new
system. The subsystems are defined by various qualifiers following the MERGE command.:

/ MERGE_OLD_BASE,SUBSYSTEM_ID= <subsystem_label>,
OLDBASE_FILE = <file_spec>

and:

/ MERGE_NEW_BASE,SUBSYSTEM_ID = <subsystem_label>,
BRANCH_DATA_FILE = <file_spec>, DATE = <myy>,
R = <n>, BUS_DATA_FILE = <file_spec>

where:

• file_spec is the file specification for the pertinent file. If file_spec has the value * for either the
BUS_DATA_FILE or BRANCH_DATA_FILE, the data is presumed to be the Powerflow command file.

• subsystem_label is the identifying label for the merged subsystem.

• DATE is the branch extraction date. Branches selected will have their energization date on or before
DATE and a de-energization date after DATE.

• The month field (as a digit) also defines winter or summer extended ratings:

``m = 1`` selects winter peak ratings.
``m = 8`` selects summer peak ratings.

See Table 4-11 for the complete listing.

• For other values, it is necessary to use an additional parameter R defined in the next section.

• R specifies extended ratings from the branch data file. See Table 4-15 and Table 4-16. Also, see
Figure 4-11 and Figure 4-12. Two modes of operation are available:

** Merge a subsystem from one OLD_BASE file with another subsystem from a different old base file. **
Merge a subsystem from an OLD_BASE file with another subsystem which is newly created from bus and
branch records.

The two merge control cards distinguish the source of the subsystem data. / MERGE_OLD_BASE identifies an
OLD_BASE file, and / MERGE_NEW_BASE identifies the bus and branch records files from which a new subsystem will
be constructed.

The R code indicates which extended ratings from the branch data file should be used. For example, the R=2 code in
the following card indicates that extra heavy ratings should be used.

/MERGE_NEW_BASE,SUBSYSID-BR_BUS,BRAN=BDCY89.DAT,DATE=196,R=2,BUSD=J96EH.BUS

2.6. Power Flow Control (PFC) 133



Interactive Power Flow

Powerflow uses appropriate ratings from the branch data for the peak winter (R=1), peak summer (R=8), extra heavy
(R=2), moderate cold (R=3), and spring (R=4) choices.

If the thermal or bottleneck rating on a branch is blank or zero in the columns for extra heavy or moderate cold ratings,
the peak winter rating is used (if available). Similarly, if the thermal, bottleneck, or emergency rating on a branch is
blank or zero in the columns for spring ratings, the peak summer rating is used (if available).

The chosen ratings are moved to columns 81 through 92 on the branch record in Powerflow.

Fig. 2.6.10: Extended Ratings Fields for L and E Records

Table 2.6.13: L and E Record Extended Fields Column Descriptions
Column Rating (“R” Selection) Field Description
81-84 1 Winter Thermal (WT)
85-88 1 Winter Bottleneck (WB)
89-92 (not used)
93-96 8 Summer Thermal (ST)
97-100 8 Summer Bottleneck (SB)
101-104 (not used)
105-108 2 Extra Heavy Thermal (EHT)
109-112 2 Extra Heavy Bottleneck (EHB)
113-116 3 Moderate Cold Thermal (MCT)
117-120 3 Moderate Cold Bottleneck (MCB)
121-124 4 Spring Thermal (SPT)
125-128 4 Spring Bottleneck (SPB)

134 Chapter 2. Contents



Interactive Power Flow

Fig. 2.6.11: Extended Ratings Fields for T and TP Records

Table 2.6.14: T and TP Record Extended Fields Column Descriptions
Column Rating (“R” Selection) Field Description
81-84 1 Winter Thermal (WT)
85-88 1, 2, 3 Winter Emergency (WE)
89-92 1 Winter Bottleneck (WB)
93-96 8 Summer Thermal (ST)
97-100 8 Summer Emergency (SE)
101-104 8 Summer Bottleneck (SB)
105-108 2 Extra Heavy Thermal (EHT)
109-112 2 Extra Heavy Bottleneck (EHB)
113-116 3 Moderate Cold Thermal (MCT)
117-120 3 Moderate Cold Bottleneck (MCB)
121-124 4 Spring Thermal (SPT)
125-128 4 Spring Emergency (SPE)
129-132 4 Spring Bottleneck (SPB)

MERGE qualifiers
>EXCLUDE_BRANCHES

Use this command to exclude from the subsystem branches following this statement. Each branch is identified with a
separate L, E, or T formatted record.

>INCLUDE_BUS

Use this command to identify additional buses which are to be included in the selected subsystem. Each bus is identified
with a separate B formatted record.

>INTERFACE_BRANCHES

Use this command to list individual interface branches. Each such interface branch is identified with a separate L, E,
or T formatted record.:

>INTERFACE_PREF=COMP
REJECT
ACCEPT

2.6. Power Flow Control (PFC) 135



Interactive Power Flow

This command assigns preference weights on competing interface branches listed following the statement. Two sub-
systems to be merged are usually topologically complementary and have common branches. These branches are called
interface branches. During merging, two sets of competing interface branches vie for selection in the final system. In
the absence of any information supplied, the default decision is to select the interface branch with the most detail.

The command above allows the user to assign preferences for the interface branches for each system. Each such interface
branch is identified on a standard L, T, or E formatted record. ACCEPT and REJECT must complement each other, or
both sets of interface branches will be accepted or rejected.

COMP forces comparison of common interface branches from the two subsystems. Acceptance from one subsystem and
rejection from the other is determined on the basis of matching bus and branch ownerships. The assumption is that the
bus owner always has better branch data. For BPA users, WSCC data is accepted when branch ownerships cannot be
determined from data.:

>MERGE_RPT = SORTED
UNSORTED

This command requests the specific level of merge report. This feature is not yet implemented.

>RENAME_BUS

This command provides a convenient way to resolve potential conflicts of identically named but topologically distinct
buses. This command introduces B-formatted records with the old name in columns 7-18 and the new name in columns
20-31.

>SAVE_AREAS

Use this command to save areas of the subsystem listed following this statement. Each area is identified with a separate
A-formatted area record.

>SAVE_BASES <list>

This command saves buses whose base kV’s match the list. Elements of the list are separated by commas (,) and
terminated by a period (.).

>SAVE_BUSES

This command saves listed buses of the subsystem. Saved buses are named on separate B-formatted bus records fol-
lowing.

>SAVE_ZONES <list>

This command saves listed zones of the subsystem. Elements of the list are separated with commas. Example: >
SAVE_ZONES NA, NB

>USE_AIC

This command specifies that A records should be generated from the old base file defined by the OLD_BASE statement.

2.6.32 MVA_BASE

/ MVA_BASE = 100
<number>

This command changes the base MVA from the default value of 100 MVA to an assigned value.

136 Chapter 2. Contents



Interactive Power Flow

2.6.33 NETWORK_DATA

/ NETWORK_DATA ,FILE= *, RXCHECK = ON
<filespec>, OFF

This introduces network bus and branch data into the program. No old base case is in residence. RXCHECK = ON
enables 𝑅/𝑋 ratios checking. If the FILE parameter value is asterisk (*), then bus and branch data is assumed to
immediately follow this command.

2.6.34 NEW_BASE

/ NEW_BASE , FILE = <filespec>

This command defines the name of the new base file to save the network solved by the case run. It may be the same as
the old base file, if you want to overwrite it.

2.6.35 OI_LIST

This command is used to list ownership interchange.:

/ OI_LIST = NONE
TIELINE
MATRIX
FULL

Owners are listed using the expanded owner identifications hard-coded in the program. See below for the complete list
of codes and expanded names.

Ownership Code Ownership Name
AAC ANACONDA ALUMINUM COMPANY
AEC ATOMIC ENERGY COMMISSION
AEP ARIZONA ELECTRIC POWER COOPERATION
ALA ALABAMA POWER COMPANY
ALC ALUMINUM COMPANY OF AMERICA
APS ARIZONA PUBLIC SERVICE COMPANY
ARL ARKANSAS POWER AND LIGHT COMPANY
ARR ARROWHEAD ELECTRIC COOPERATIVE, INC.
AVC AMARGOSA VALLEY COOPERATIVE INC.
BBE BIG BEND ELECT. COOP
BCH BRITISH COLUMBIA HYDRO AND POWER AUTHORITY
BEC BASIN ELECTRIC POWER COOP.
BEP BASIN ELECTRIC COOPERATIVE
BHP BLACK HILLS POWER AND LIGHT COMPANY
BPA BONNEVILLE POWER ADMINISTRATION
BPD BENTON CO. PUD
BRE BENTON REA
CAL CALIFORNIA DEPARTMENT OF WATER RESOURCES
CCC COOS CURRY ELECTRIC COOP
CCP COWLITZ COUNTY PUBLIC UTILITY DISTRICT NO.1
CCS CITY OF COLORADO SPRINGS
CE1 DEP. OF ARMY CORPS OF ENGINEER (REGION 1 AREA)

continues on next page

2.6. Power Flow Control (PFC) 137



Interactive Power Flow

Table 2.6.15 – continued from previous page
Ownership Code Ownership Name
CE2 DEP. OF ARMY CORPS OF ENGINEER (REGION 2 AREA)
CE3 DEP. OF ARMY CORPS OF ENGINEER (REGION 3 AREA)
CE4 DEP. OF ARMY CORPS OF ENGINEER (REGION 4 AREA)
CE5 DEP. OF ARMY CORPS OF ENGINEER (REGION 5 AREA)
CE6 DEP. OF ARMY CORPS OF ENGINEER (REGION 6 AREA)
CE7 DEP. OF ARMY CORPS OF ENGINEER (REGION 7 AREA)
CEC COMMONWEALTH EDISON COMPANY (ILLINOIS)
CED COMMONWEALTH EDISON COMPANY OF INDIANA, INC.
CEN CENTRAL POWER ELECTRIC COOP., INC. (N. DAKOTA)
CIP CENTRAL IOWA POWER COOPERATIVE
CIS CENTRAL ILLINOIS PUBLIC SERVICE COMPANY
CLA CLALLAM PUD
CLK CLARK COUNTY PUBLIC UTILITY DISTRICT NO. 1
CLP CENTRAL LINCOLN PUD
CLT CLATSKANIE PUD
CMS CHICAGO, MILWAUKEE, ST.PAUL AND PACIFIC R.R. CO.
CNP CENTRAL NEBRASKA PUBLIC POWER AND IRRIGATION DIST.
COB CORN BELT POWER COOPERATIVE, INC.
COE DEP. OF ARMY CORPS OF ENGINEERS
COR CITY OF RICHLAND
CPA COOPERATIVE POWER ADMINISTRATION
CPD CHELAN COUNTY PUBLIC UTILITY DISTRICT NO. 1
CPI CONSUMERS POWER INC.
CPL CALGARY POWER LIMITED
CPN C P NATIONAL
CPP CONSUMERS PUBLIC POWER DISTRICT (NEBRASKA)
CPS COMMUNITY PUBLIC SERVICE CO.
CPU CALIFORNIA PACIFIC UTILITIES COMPANY
CRP COLUMBIA RIVER PUD
CU COLORADO-UTE ELECTRIC ASSOCIATION
DPC DAIRYLAND POWER COOPERATIVE (WISC., MINN.)
DPD DOUGLAS COUNTY PUBLIC UTILITIES DISTRICT
EEQ EASTERN EQUIVALENT
EIL EASTERN IOWA LIGHT AND POWER COOPERATIVE
ELE EL PASO ELECTRIC COMPANY
ELP EL PASO ELECTRIC COMPANY
EMP EMERALD PUD
EPE EL PASO ELECTRIC
ERP EAST RIVER ELECTRIC POWER COOP.,INC.(S. DAKOTA)
EWE EUGENE WATER AND ELECTRIC BOARD (OREGON)
FRC FALL RIVER ELEC. COOP
FRK FRANKLIN CO. PUD
GH GRAYS HARBOR COUNTY PUBLIC UTILTIY DISTRICT
GPD GRANT COUNTY PUD NO.2 (WASHINGTON)
GSU GULF STATE UTILITIES COMPANY (TEXAS, LOUISIANA)
HAR HARNEY ELECTRIC COOP
HEA HIGHLINE ELECTRIC ASSOCIATION
HPL HOUSTON POWER AND LIGHT COMPANY
IDP IDAHO POWER COMPANY

continues on next page

138 Chapter 2. Contents



Interactive Power Flow

Table 2.6.15 – continued from previous page
Ownership Code Ownership Name
IEL IOWA ELECTRIC LIGHT AND POWER
IGE IOWA ILLINOIS GAS AND ELECTRIC COMPANY
IID IMPERIAL IRRIGATION DISTRICT (CALIFORNIA)
IIG IOWA-ILLINOIS GAS & ELECTRIC CO.
ILL ILLINOIS POWER COMPANY
ILM ILLINOIS AND EASTERN MISSOURI
IME INDIANA AND MICHIGAN ELECTRIC COMPANY
INL INLAND POWER AND LIGHT
INP INLAND POWER AND LIGHT COMPANY
IPC IDAHO POWER COMPANY
IPL IOWA POWER AND LIGHT COMPANY
IPS IOWA PUBLIC SERVICE COMPANY
IPU IOWA SOUTHERN UTILITIES CO.
ISP INTERSTATE POWER COMPANY
ISU IOWA SOUTHERN UTILITIES COMPANY
KCP KANSAS CITY POWER AND LIGHT COMPANY
KGE KANSAS GAS AND ELECTRIC COMPANY
KPL KANSAS POWER AND LIGHT COMPANY
LA CITY OF LOS ANGELES DEPARTMENT OF WATER AND POWER
LCR LOWER COLORADO REGION WESTERN AREA POWER ADMIN.
LEC LANE CO. ELEC.COOP.
LES LINCOLN ELECTRIC SYSTEM
LEW LEWIS CO. PUD.
LPL LOUISIANA POWER AND LIGHT COMPANY
LSD LAKE SUPERIOR DISTRICT POWER COMPANY
LVP LOWER VALLEY POWER AND LIGHT
MAI MAIN-MID-AMERICA INTERPOOL NETWORK
MCM MCMINNVILE, CITY OF
MDU MONTANA-DAKOTA UTILITIES COMPANY
MFR MILTON-FREEWATER
MH MANITOVA HYDRO ELECTRIC BOARD
MIN MINNKOTA POWER COOPERATIVE, INC.
MLC MISSOURI POWER AND LIGHT COMPANY
MLE MOON LAKE ELECTRIC ASSOCIATION, INC.
MN1 MASON COUNTY PUD #1
MN3 MASON COUNTY PUD #3
MPC MONTANA POWER COMPANY
MPL MINNESOTA POWER AND LIGHT COMPANY
MPO MISSISSIPPI POWER AND LIGHT COMPANY
MPR MID PACIFIC REGION - USBR
MPS MISSOURI PUBLIC SERVICE COMPANY
MPW MUSCATINE POWER AND WATER
MWD METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA
NEP N.W. ELECTRIC POWER COOP., INC. (MISSOURI,ARK.)
NGT NEBRASKA ELECTRIC GENERATING AND TRANSMISSION COOP
NIP NORTHWEST IOWA POWER COOPERATIVE
NLI NORTHERN LIGHTS,INC.
NPC NEVADA POWER COMPANY
NPP NEBRASKA PUBLIC POWER SYSTEM

continues on next page

2.6. Power Flow Control (PFC) 139



Interactive Power Flow

Table 2.6.15 – continued from previous page
Ownership Code Ownership Name
NPR NORTH PACIFIC REGION - USBR
NSC NORTHERN STATES POWER COMPANY, (WISCONSIN)
NSP NORTHERN STATES POWER COMPANY, (MINN.,N.D.,S.D.)
NWA NORTHERN WASCO PUD
NWP NORTHWESTERN PUBLIC SERVICE COMPANY (S. DAKOTA)
OGE OKLAHOMA GAS AND ELECTRIC COMPANY
OKP OKANOGAN CO. PUD
OPD OMAHA PUBLIC POWER DISTRICT
OPP OMAHA PUBLIC POWER DISTRICT
OTC OREGON TRAIL COOP
OTP OTTER TAIL POWER COMPANY
OWI OROVILLE-WYANDOTTE IRRIGATION DISTRICT, (CALIF.)
PAN PORT ANGELES
PDO PEND OREILLE PUD
PEG PLAINS ELECTRIC G AND T COOP(NEW MEXICO)
PEN PENINSULA LT. CO.
PG PORTLAND GENERAL ELECTRIC COMPANY
PGE PACIFIC GAS AND ELECTRIC COMPANY
PGT PLAINS ELECTRIC G AND T COOP., (NEW MEXICO)
PNM PUBLIC SERVICE COMPANY OF NEW MEXICO
PPL PACIFIC POWER AND LIGHT COMPANY
PPW PACIFIC POWER AND LIGHT - WYOMING
PRP PLATTE RIVER POWER AUTHORITY
PSC PUBLIC SERVICE COMPANY OF COLORADO
PSI PUBLIC SERVICE COMPANY OF INDIANA
PSO PUBLIC SERVICE COMPANY OF OKLAHOMA
PSP PUGET SOUND POWER AND LIGHT COMPANY
R1 WESTERN AREA POWER ADMIN. REGION 1
R2 WESTERN AREA POWER ADMIN. SACRAMENTO AREA
R3 WESTERN AREA POWER ADMIN. REGION 3
R4 WESTERN AREA POWER ADMIN. SALT LAKE CITY AREA
R5 WESTERN AREA POWER ADMIN. REGION 5
R6 WESTERN AREA POWER ADMIN. BILLINGS AREA
R7 WESTERN AREA POWER ADMIN. DENVER AREA
RCP RURAL COOPERATIVE POWER ASSOCIATION, (MINNESOTA)
RFT RAFT RIVER RURAL ELECTRIC COOP
SC SOUTHERN CALIFORNIA EDISON COMPANY
SCE SOUTHERN CALIFORNIA EDISON COMPANY
SCL SEATTLE CITY LIGHT COMPANY
SCP SOUTHEAST COLORADO POWER ASSOCIATION
SDG SAN DIEGO GAS AND ELECTRIC COMPANY
SJL SAINT JOSEPH LIGHT AND POWER COMPANY
SMD SACRAMENTO MUNICIPAL UTILITIES DISTRICT
SPA SOUTHWESTERN POWER ADMIN.
SPC SASKATCHAWAN POWER COMPANY
SPD SNOHOMISH COUNTY PUBLIC UTILITIES DISTRICT
SPP SIERRA PACIFIC POWER COMPANY
SPS SOUTHWESTERN PUBLIC SERVICE COMPANY
SRP SALT RIVER POWER DISTRICT

continues on next page

140 Chapter 2. Contents



Interactive Power Flow

Table 2.6.15 – continued from previous page
Ownership Code Ownership Name
SUB SPRINGFIELD UTILITY BOARD
SWP SOUTHWESTERN POWER ADMINISTRATION
SWR SOUTHWEST REGION - USBR
TCE TRI-COUNTY ELECTRIC ASSOCIATION, INC. (WYOMING)
TCL TACOMA CITY LIGHT COMPANY
TEP TUSCON ELECTRIC POWER COMPANY
TES TEXAS ELECTRIC SERVICE COMPANY
TGE TUCSON GAS AND ELECTRIC COMPANY
TIL TILLAMOOK PUD
TPL TEXAS POWER AND LIGHT COMPANY
TRI TRI-STATE GENERATION AND TRANSMISSION ASSOC.
TSG TRI-STATE GENERATION AND TRANSMISSION ASSOC.
TVA TENNESEE VALLEY AUTHORITY
UEC UNION ELECTRIC COMPANY (IOWA,MISSOURI,ILLLINOIS)
UPA UNITED POWER ASSOCIATION, INC. (NORTH DAAKOTA)
UPL UTAH POWER AND LIGHT COMPANY
USN U.S.NAVY WAP WESTERN AREA POWER ADMINISTRATION-BILLINGS AREA
WEP WISCONSIN ELECTRIC POWER COMPANY
WIS WISCONSIN PUBLIC SERVICE CORP.
WKP WEST KOOTENAY POWER AND LIGHT COMPANY, LTD.
WMP WISCONSIN MICHIGAN POWER COMPANY
WPD WHATCOM COUNTY PUD
WPS WASHINGTON PUBLIC POWER SUPPLY SYSTEM
WRP WISCONSIN RIVER POWER COMPANY
WRE WELLS RURAL ELECTRIC CO.
WST WESTERN POWER AND GAS COMPANY (COLORADO)
WWP WASHINGTON WATER POWER COMPANY
YWE YUMA WRAY ELEC.ASSN.,INC.

2.6.36 OLD_BASE

/ OLD_BASE, FILE = <filespec>, REBUILD = OFF
ON

This command specifies that a previously solved Powerflow case is to be loaded from the specified file and used as the
base system for the current request.

<filespec> The file specification of the solved network to be re-solved.

The REBUILD switch causes the program to rebuild all of the tables and starts the solution with a “flat start.”

2.6. Power Flow Control (PFC) 141



Interactive Power Flow

2.6.37 OUTAGE_SIMULATION

/ OUTAGE_SIMULATION

This command simulates the effect of line outages, load dropping, generator outages, and generator rescheduling. It
invokes a process which modifies the base case data in residence. For this reason, this process should not be used with
any other process.:

/ OUTAGE_SIM
> OLDBASE = filespec
.......
.......
....... Optional Outage Simulation Required Qualifiers
.......
.......

where:

filespec File specification for the base file to be loaded to begin the process.

OUTAGE_SIMULATION Qualiers

>ANALYSIS = OFF, MINLOADING = 100
ON <num>

This command specifies the threshold loading of a line to be included as contingency-caused overloads. This threshold
may be raised on individual branches to screen out base case overloads.:

>COMMON_MODE, FILE = *
>COMMON_MODE_ONLY, FILE =*

These two commands introduce a script which defines one or more “common-mode” outages. The second form restricts
the outage simulation study to include only common mode outages. In this case, it is still necessary to introduce an
associated >OUTAGE record, but it is used only to define the zones and bases of interest.

The simulation and analysis of any common-mode outages complements in a seamless fashion that for the ordinary
single-contingency branch outages. The script associated with the common mode study can be either in a separate file
(in which case a file name would be specified) or in the input stream (in which case a file name * is specified).

Each common-mode outage consists of two parts: A common-mode identification record (>MODE) and the set of WSCC-
formatted bus an/or branch changes which are associated with that common mode outage. It is useful and recommended
to annotate this script with comment text. An example will illustrate all the points mentioned.:

> MODE B/D DRISCOLT 230
B D DRISCOLT 230
. Above common mode outage takes out the following lines:
. DRISCOLT 230 ALLSTON 230
. DRISCOLT 230 CLATSOP 230
. DRISCOLT 230 DRISCOLL 230
.

Here, the name of the introduced common-mode outage is “B/D DRISCOLT 230”. The name is arbitrary; it should be
sufficiently distinct to contrast it with entities associated with ordinary single contingency branch outages. The name
is 40-characters long, is defined in columns (7:47) on the > MODE records, and is truncated to 31 columns in certain
Outage Analysis listings where it must compete with the single contingency branch outages. A maximum of 50 >MODE
records are permitted.

142 Chapter 2. Contents



Interactive Power Flow

Each >MODE record is accompanied with an set of arbitrary change records which specifically define all of the changes in
the system that are effected by the common mode. If no change records are submitted, the >MODE record is meaningless,
since it would not perturb the system in any manner.

The common mode changes permitted are restricted to the following:

• Bus deletion (D) and modification (M).

• Continuation bus deletion (D) and modification (M).

• Branch deletion (D).

The change methodology is identical with that used elsewhere. A bus deletion, for example, automatically deletes all
components associated with it. Implementation, however, expedites the change, but in a manner designed to maximize
the computational efficiency. The same bus deletion, to repeat the example, is effected by temporarily changing the
impedance of all emanating branches to 10000.0 p.u. X, and preserving a small residual admittance for the bus.

With judicious selection of change records, it is possible to simulate complex scenarios such as the loss of switching
CAPs followed with the loss of a transformer. If the common mode changes isolate even a single bus in the system, the
outage is skipped and the isolation is noted within the outage analysis reports.

Although every attempt was made to simulate common mode outages as efficiently as possible, the highly efficient
line compensation schemes that were utilized in the single contingency branch outages could not be used here. Each
common mode outage requires refactorization of the associated network matrices.

>DEBUG = OFF
ON

This turns on debug dumps.

Note: Caution! These dumps can be enormous.

>DEFAULT_RATING

This command indicates that the following text is line default data. Branches in the specified areas of interest are
examined for zero rating (which is an omission of data). If the base kVs of the terminals match the kV in the following
default ratings, new ratings are assigned to their branches. They then become candidates for branch overload checking
following an outage.

See the table below for the format of default ratings.

This command specifies that all line resistance in the eliminated system is replaced with equivalent current injection.
The equivalent network, as modified by this option, is easier to solve.:

>EXPAND_NET = 2
<nn>

This command specifies that the border of the selected equivalent network should emanate outwards an additional
number of buses. The expansion selected should be less than 100.:

>GEN_OUTAGE = NONE
<nn>

This command specifies the maximum number of generator outages for rescheduling.

>INCLUDE_CON = <filespec>

Use this command to divert the input stream to an auxiliary file that contains / OUTAGE_SIMULATION text. This
auxiliary file cannot contain a recursive / INCLUDE_CON statement.:

2.6. Power Flow Control (PFC) 143



Interactive Power Flow

>LOW_VOLT_SCREEN = 80
<num>

This command specifies a contraction for overload values to compensate for effects of voltage changes. It lowers the
threshold which tests for overloaded lines.:

>MIN_EQUIV_Y = .02
<num>

This command specifies minimum admittance of equivalent branches.:

>NO_SOLUTION, ANGLE = 3.0, DELTA_V = .5
<num> <num>

This command specifies conditions for no solution (or no convergence). ANGLE is the largest excursion angle (from
one iteration to another) in radians relative to the slack bus.

>OLD_BASE = <filespec>

<filespec> is file specification of the solved network to be re-solved.

Because / OUTAGE_SIMULATION is a stand-alone process, it must begin by loading an old base file which is introduced
using this command.:

>OUTAGE, ZONES = * BASES= *
<list> <list>

This command specifies the ZONES and voltage levels where outages should be taken. Elements of the list should be
separated by commas.:

>OUTPUT_SORT , OVER_OUT
OUT_OVER, OWNER
BOTH

This command specifies the sort order for output listing in terms of overloads and associated outages. The OWNER option
requests ownership-bus sort order.:

>OVERLOAD, ZONES = * BASES= *
<list> <list>

To specify zones and voltage levels where overload should be monitored, use this command. Entities in list should be
separated by commas.:

>PHASE_SHIFT = FIXED_POWER
FIXED_ANGLE

This command specifies phase-shifter representation constant branch power or constant phase shift angle.:

>REACTIVE_SOL = ON
OFF

This command invokes the reactive solution feature. Normally, only the P-constraints are held.:

>REALLOCATE = NONE
LOAD
LOADGEN

144 Chapter 2. Contents



Interactive Power Flow

This command specifies that load may be shed, generation changed, or both, in order to relieve overload.:

>REDUCTION = NONE,REI=OFF
SIMPLE ON
OPTIMAL

This command requests the reduction feature and specifies the type of reduction.:

>REDUCTION_DEBUG = NONE
MINOR
MAJOR

This is used to request the debug feature.:

>RELAX_BR_RATE = ON,PERCENT=5.0
OFF <NUM>

This command requests that the branch ratings be relaxed by a certain percentage.:

>SET_RATINGS, NOMINAL, FILE = <filespec>
SUMMER
WINTER

This command specifies the special ratings of branches that are used for overload determinations. The number of
branches whose ratings are specified in FILE is given by a records parameter. Specification records follow this qualifier
if the file parameter is omitted. Rating records are described in the table below.

Table 2.6.16: Fields for Rating Records
Column Position Content
7-15 bus name
16-19 base voltage
21-27 bus name
28-31 base voltage
32 parallel identication
34-37 nominal amps rating
39-42 summer amps rating
44-47 winter amps rating

>SOL_ITER, FIXED = 3
<nn>

This command sets the solution iteration limit per outage. Divergence is assumed when this limit is exceeded.

>TOLERANCE = .005
<num>

This specifies the convergence tolerance in per unit power. Convergence is assumed when mismatch is less than this
value. Larger values (0.05) yield fast, approximate solutions; smaller values yield slower, more exact solutions.

2.6. Power Flow Control (PFC) 145



Interactive Power Flow

Debugging techniques

The following method has proved to be a useful tool for debugging the Outage Simulation Program (OSP) interactively.
In invoking this option, three events occur.

1. After the equivalent reduced system is established but before the individual branch outages are taken, the user
interactively selects from the full set of branch outages one or more outages. The unselected outages will be
ignored.

2. Debugging switches are turned on.

3. Salient process and status information about each outage is displayed on the screen.

This is most useful to confine the study to a single questionable outage which them will to be compared with the results
of an IPF change case depicting the same outage. To invoke this, enter the two following DCL commands in a terminal
window.:

$ DEBUG_OUTAGE_SIMULATION_STUDY :== ON
$ RUN IPF_EXE:FSTOUT.EXE_V321

The second command executes the OSP interactively. After responding to the prompted Power Flow Control file and
waiting a few minutes, OSP’s special debugging in invoked.

Enter outage range (n:m), 0=Save, -1=Cancel)

You must select the outage by trial and error using a binary search. Enter a candidate outage branch index (say 127).
The dialog continues (using an actual case for an example). 127 outage BELNGM P 115.0 CARILINA 115.0 1 : Select?
(Y or N) Selecting “Y” will add this to the outage set’ “N” will ignore it. If the displayed outrage is alphabetically lower
than the desired outage, respond with “N” and enter a higher outage number at the next prompt. If it is higher do the
opposite. The dialog loops for additional selections or searches.

Enter outage range (n:m), 0=Save, -1=Cancel)

Eventually, when the desired ouages(s) is (are) selected, the process is exited with either option (“0”, saving the selection
and continuing or “-1”, ignoring the selection and continuing).

2.6.38 OVERLOAD_RPT

/ OVERLOAD_RPT, TX = 90. , LINE = 90.
<num> <num>

This command sets the percentage of line and transformer ratings above which line and transformer loadings are listed
in the analysis report.

2.6.39 P_ANALYSIS_RPT

/ P_ANALYSIS_RPT , LEVEL = 2 , *
1 ZONES=<list>
3 OWNERS=<list>
4

Use this command to specify the printed analysis report.

When <list> is blank, asterisk or null, ALL is assumed unless limited by a preceding statement.

The level number determines the analysis summaries to be displayed.

146 Chapter 2. Contents



Interactive Power Flow

For LEVEL=1, the following summaries are included:

• User-defined analysis (optional).

• Buses with unscheduled reactive.

For LEVEL=2, the following are displayed with summaries for LEVEL=1:

• Total system generations and loads by owner.

• System generations, loads, losses and shunts by zones.

• Undervoltage-overvoltage buses.

• Transmission lines loaded above XX.X% of ratings.

• Transformers loaded above XX.X% of ratings.

• Transformer excited above 5% over tap.

• Transmission system losses.

• BPA industrial loads.

• dc system.

• Shunt reactive summary.

• Summary of LTC transformers.

• Summary of phase-shifters.

• Summary of %Var-controlled buses.

• Summary of type BX buses.

• Summary of adjustable Var compensation.

• Transmission lines containing series compensation.

For LEVEL=3, the following is displayed in addition to the LEVEL=2 output:

• Bus quantities.

For LEVEL=4, the following are displayed in addition to the LEVEL=3 display:

• Spinning reserves.

• Transmission line efficiency analysis. Lines loaded above XX.X% of nominal ratings.

• Transformer efficiency analysis. Total losses above X.XX% of nominal ratings.

• Transformer efficiency analysis. Core losses above X.XX% of nominal ratings.

Example

/ F_ANALYSIS_RPT, LEVEL=4, OWNERS= BPA,PGE,PPL,WPS
/ P_ANALYSIS_RPT, LEVEL=1, ZONES = NA, NB, NC
/ F_ANALYSIS_RPT, LEVEL=4, *
/ P_ANALYSIS_RPT, LEVEL=1, ZONES = *

2.6. Power Flow Control (PFC) 147



Interactive Power Flow

2.6.40 P_INPUT_LIST

/ P_INPUT_LIST , NONE
FULL, ERRORS = NO_LIST

LIST
ZONES = <list>
ZONES = ALL, FULL, or NONE

This command lists input data on PAPER. Output can be restricted to individual zones specified in <list>, which are
separated with commas. Note that FULL or NONE may be specified in two forms.

The ERRORS options can be set to NO_LIST to suppress the input listing if any Fatal (F) errors are encountered.

Example:

PWRFLO case: 9BUS proj: TEST-CASE * * * INPUT LISTING * * * 9 BUSSES 8 EQUIVALENT BR␣
→˓PAGE 3 14-JUN-94

BASIC NINE-BUS CASE
FOR EXAMPLE REPORTS

BS GEN1 16.5 2 .0PL .0QL .0PS .0QS 240.0PM 306.2PG 150.0QH -100.0QL 1.040VH .0VL
T 1 GEN1 HI 230.0 0 0 MVA 0 C .00000 R .05760 X .00000 G .00000 B 16.50 230.00 0 T 0 E␣
→˓0 B 0IN
B GEN1 HI 230.0 2 .0PL .0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
T 2 GEN1 16.5 0 0 MVA 0 C .00000 R .05760 X .00000 G .00000 B 230.00 16.50 0 T 0 E 0 B␣
→˓0IN
L 2 STA A 230.0 0 0 AMP 0 C .01000 R .08500 X .00000 G .08800 B .0 MI 0 T 0 B 0IN
L 1 STA B 230.0 0 0 AMP 0 C .01700 R .09200 X .00000 G .07900 B .0 MI 0 T 0 B 0IN
BQ GEN2 18.0 1 .0PL .0QL .0PS .0QS 180.0PM 163.0PG 120.0QH -80.0QL 1.025VH .000VL
T 1 GEN2 HI 230.0 0 0 MVA 0 C .00000 R .06250 X .00000 G .00000 B 18.00 230.00 0 T 0 E␣
→˓0 B 0IN
B GEN2 HI 230.0 1 230.0PL .0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
T 2 GEN2 18.0 0 0 MVA 0 C .00000 R .06250 X .00000 G .00000 B 230.00 18.00 0 T 0 E 0 B␣
→˓0IN
L 1 STA A 230.0 0 0 AMP 0 C .03200 R .16100 X .00000 G .15300 B .0 MI 0 T 0 B 0IN
BQ GEN3 13.8 2 .0PL .0QL .0PS .0QS 130.0PM 85.0PG 80.0QH -60.0QL 1.025VH .000VL
T 1 GEN3 HI 230.0 0 0 MVA 0 C .00000 R .05860 X .00000 G .00000 B 13.80 230.00 0 T 0 E␣
→˓0 B 0IN
B GEN3 HI 230.0 2 .0PL .0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
T 2 GEN3 13.8 0 0 MVA 0 C .00000 R .05860 X .00000 G .00000 B 230.00 13.80 0 T 0 E 0 B␣
→˓0IN
L 1 STA B 230.0 0 0 AMP 0 C .03900 R .17000 X .00000 G .17900 B .0 MI 0 T 0 B 0IN
L 1 STA C 230.0 0 0 AMP 0 C .01190 R .10080 X .00000 G .10450 B .0 MI 0 T 0 B 0IN
B STA A 230.0 1 125.0PL 50.0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
L 1 GEN1 HI 230.0 0 0 AMP 0 C .01000 R .08500 X .00000 G .08800 B .0 MI 0 T 0 B 0IN
L 2 GEN2 HI 230.0 0 0 AMP 0 C .03200 R .16100 X .00000 G .15300 B .0 MI 0 T 0 B 0IN
B STA B 230.0 2 90.0PL 30.0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
L 2 GEN1 HI 230.0 0 0 AMP 0 C .01700 R .09200 X .00000 G .07900 B .0 MI 0 T 0 B 0IN
L 2 GEN3 HI 230.0 0 0 AMP 0 C .03900 R .17000 X .00000 G .17900 B .0 MI 0 T 0 B 0IN
B STA C 230.0 2 100.0PL 35.0QL .0PS .0QS .0PM .0PG .0QH .0QL .000VH .000VL
L 2 GEN3 HI 230.0 0 0 AMP 0 C .01190 R .10080 X .00000 G .10450 B .0 MI 0 T 0 B 0IN

PWRFLO case: 9BUS proj: TEST-CASE * * * INPUT LISTING * * * 9 BUSSES 8 EQUIVALENT BR␣
(continues on next page)

148 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

→˓PAGE 3 14-JUN-94

2.6.41 P_OUTPUT_LIST

/ P_OUTPUT_LIST, NONE, FAILED_SOL = FULL_LIST
FULL PARTIAL_LIST
ZONES = <list> NO_LIST
ZONES = ALL, FULL, or NONE

This command lists output on PAPER. Output can be restricted to individual zones specified in <list>, which are
separated with commas. Note that FULL or NONE may be specified in two forms.

The FAILED_SOL option is set to override the output listing if a failed solution occurs. It defaults to a full listing. A
PARTIAL_LIST observes zone lists.

Example:

PWRFLO case: 9BUS proj: TEST-CASE * * * * DETAILED OUTPUT LISTING * * * * PAGE 8 14-JUN-
→˓94

BASIC NINE-BUS CASE
FOR EXAMPLE REPORTS

A COMPLETE OUTPUT LISTING OF ALL BUSSES WILL BE GIVEN

GEN1 16.5 17.2KV/ .0 ZONE 2 306.2PGE 72.5QCOND .0PLOAD .0QLOAD 1.040PU␣
→˓KV BUS TYPE S GEN1 HI 230.0 2 306.2PIN 72.5QIN ␣
→˓0.0PLOSS 52.7QLOSS 16.5/230.0 ␣
→˓ 306.2PNET 72.5QNET 0.0 SLACK ADJ

2.6.42 REBUILD

/ REBUILD = OFF
ON

This command requests that all internal data tables be rebuilt using the current specified OLDBASE file. This has the
same effect in a case as the REBUILD parameter on the / OLD_BASE statement.

2.6.43 REDUCTION

/ REDUCTION

This command reduces the network in residence to a desired size and solves the reduced network. It can be saved or
processed further as an ordinary base case. For more detail on the methods used, see Network Reduction.:

/ REDUCTION
.......
.......
....... Optional Reduction Qualifiers

(continues on next page)

2.6. Power Flow Control (PFC) 149



Interactive Power Flow

(continued from previous page)

.......

.......

Reduction Qualifiers

>COHERENT_CLUSTERS, <name> <base kV>

This identifies row-coherent generators (or load) of an REI subsystem. The name must be unique, containing 1-7
characters without blanks and be left-justified. The REI components, which will have their generation and/or load
transferred to the coherent generator, are identified with ordinary WSCC-formatted bus (Type B) records which follow.

The named constituent buses which comprise each coherent cluster may be either retained or eliminated buses. In
either case, the constituent buses will be eliminated.

Special codes on each bus permit individual dispositions of generator and load quantities. Generation and/or load may
be converted to constant current, constant admittance, or converted to an REI coherent unit. The codes are show in the
table below.

Table 2.6.17: Reduction Qualifier Codes
Column Value
3 (Generation) 0 - Constant Current
3 (Generation) 1 - Constant Admittance
3 (Generation) Blank or 2 - REI
4 (Load) 0 - Constant Current
4 (Load) 1 - Constant Admittance
4 (Load) Blank or 2 - REI

>DEBUG = NONE
MINOR
MAJOR
ORDERING

Use this to request the debug feature.

Table 2.6.18: Reduction Debug Codes
Debug Effect
Minor Minimal debug.
Major Includes dump of intermittent reduction steps.
Ordering Includes full dump of reordering arrays during each nodal elimination step.

>ELIM_MODE, GEN = CURRENT, LOAD = CURRENT, SHUNT_Y = ADMITT
ADMITT ADMITT CURRENT
REI,PMIN=<n> REI REI

This command determines how the nodal generation, load, and shunt admittance on eliminated nodes is to be processed.
It does not affect the original quantities of the interior or envelop (border) nodes. The disposal options are to convert
selected quantities to nodal current, to nodal shunt admittance, or to append them to an REI node.

>ENVELOPE_BUSES = BE

150 Chapter 2. Contents



Interactive Power Flow

This command, when elected, changes the subtypes of all envelope node to type BE. Its primary merit is to secure the
voltages of the terminal buses at their base case values an improve the solvability of the reduced equivalent system.
The default option is to leave the envelope buses in their original subtype.

>EXCLUDE_BUSES

This command excludes from the retained network the buses listed on the bus-formatted records following this state-
ment. Its purpose is to allow more flexibility in the definition than allowed with a simple SAVE_BASES or SAVE_ZONES.
Obviously, the retained system must already be defined by a prior SAVE_BASES or SAVE_ZONES command.

>INCLUDE_BUSES

This command includes in the retained network additional buses listed on the bus-formatted records following this state-
ment. Its purpose is to allow more flexibility in the definition than allowed with a simple SAVE_BASES or SAVE_ZONES.
Obviously, the retained system must already be defined by a prior SAVE_BASES or SAVE_ZONES command.

>INCLUDE_CON = <filespec>

Use this command to include a set of user-specified default command qualifiers, which is stored in a file. Such a default
command file should not contain this / INCLUDE_CON statement.:

>KEEP_AI_SYS = ON
OFF

This command requests that the equivalent network will retain all of the attributes of area interchange control. This
includes all area slack nodes and all tie line terminal nodes.:

>MIN_EQUIV_Y = .02
<num>

This command specifies the minimum admittance of equivalent branches that are retained. Its purpose is to reduce
the large number of equivalent branches which are generated, some of which have such large impedances that their
contribution to the flows are marginal. A smaller value of 1.0 is recommended. Equivalent branches which have
lower admittances (or what is the same, higher impedances) will be replaced with equivalent shunt admittances at both
terminals.:

>OPTIMAL_REDU = ON
OFF

This command switches the optimal network determination feature, which precedes the actual network reduction. When
the optimal network selection is ON, it may enlarge the user-specified retained system with optimally selected nodes
such that the overall size of the reduced system will be minimized. In essence, it expands the boundary into the
eliminated system in a manner which will topologically result in an equivalent network having more buses but fewer
branches overall. Thus, the user defines a fuzzy retained system containing the minimum desired configuration, and
the optimal network selection will enlarge the network if feasible.:

>RETAIN_GEN = OFF, PMIN = 100.0
ON <num>

This command selected all generators with generation > PMIN to be in the retained network.:

>REI_CLUSTERS, VOLT_DIFF =.25, ANGLE_DIFF = 20.
<num> <num>

This command works in conjunction with the REI option on the ELIM_MODE command. An attempt is made to
automatically consolidate REI clusters which may have only a single node. However, their consolidation may result
in an equivalent REI node whose voltages are too bizarre. It is electrically correct, but may cause solution problems
since voltages are initialized about 1.0. By restricting the voltage differences of REI consolidation candidates to those

2.6. Power Flow Control (PFC) 151



Interactive Power Flow

whose voltage differences are less than the user-prescribed value, the resultant consolidated REI cluster will have a
more feasible voltage.:

>SAVE_BASES = <list>

This command defined the retained network as consisting of those buses which have the base kvs in list. Elements of
list are separated with commas (,).:

>SAVE_BUSES

This command defines the retained network as consisting of all buses identified on the following bus-formatted records.
It is a brute force method to define the retained network. It cannot be used in conjunction with SAVE_ZONES or
SAVE_BASES. See INCLUDE_BUSES.:

>SAVE_ZONES = <list>, BASES = <list>

This command defines the retained network as consisting of those buses which have zones in the first list, with the
optional, additional provision that their base kvs must be in the second list. Elements of the list are separated with
commas (,).:

>STARTING_VOLTAGES = FLAT
HOT

This command defines the starting voltages which will be used in the ensuing rebuilding and solution of the reduced
equivalent base. The default is FLAT, meaning that the solution will use flat starting voltages. There are two separate
applications for this option. The first application is to verify the integrity of the equivalent bus and branch data structures
from the complex reduction processing. When used in conjunction a another solution option:

/ SOLUTION > BASE_SOLUTION

the ensuing convergence checks performed in output report independently verify the validity of the reduced bus and
branch data. The second application is to assist in a solution of a reduced equivalent system if such assistance becomes
necessary.:

>ULT_MODE, GEN = CURRENT, LOAD = CURRENT, SHUNT_Y = ADMITT
ADMITT ADMITT CURRENT
POWER POWER POWER

This command defines the ultimate form which the currents distributed from the eliminated nodes to the border nodes
will attain. It affects only the border nodes. Note that before the elimination, the generation, load, and shunt of each
eliminated node is disposed as defined by the command ELIM_MODE. Those quantities, which were distributed as three
separate current vectors during the network reduction, are now to be transformed into their ultimate form. The dis-
tributed currents (generation, load, and shunt) will be encoded into special types of +A continuation buses with owner-
ship ***.

Table 2.6.19: Ultimate Form of Distributed Currents
Option Meaning Code

year
Comment

CUR-
RENT

Constant current
model

01 The load elds are interpreted as constant current, constant power
factor

ADMITT Constant admittance 01 The shunt elds are interpreted in the ordinary manner.
POWER Constant MVA 02 The generation elds are interpreted in the ordinary manner.

It should be noted that the special continuation records +A with ownership *** will always be generated to hold the
equivalent shunt admittance which results from the admittance to ground in the eliminated system.

152 Chapter 2. Contents



Interactive Power Flow

2.6.44 RPT_SORT

/ RPT_SORT = BUS
ZONE
AREA
OWNER

This command sorts output information of a solved network by bus, zone, area, or ownership. The area sort is by AO
records, not by A records. See section Area Output Sort (AO).

2.6.45 SAVE_FILE

/ SAVE_FILE, TYPE = WSCC_ASCII, FILE = <filespec>
WSCC_BINARY

/ SAVE_FILE, TYPE = NEW_BASE, FILE = <filespec>

/ SAVE_FILE, TYPE = NETWORK_DATA, FILE = <filespec>,
DIALECTS = BPA,

WSCC,
WSCC1,
PTI,

SIZE = 120,
80,

RATINGS = EXTENDED
MINIMUM
NOMINAL

/ SAVE_FILE, TYPE = CHANGES, FILE = <filespec>

These commands request that the identified file type be written to the named file. Type = WSCC_ASCII or type =
WSCC_BINARY writes an interface file which can be read by the WSCC Stability Program (version 9 or greater)
in lieu of an IPS history file. The filename must be specified. The file can be written in either formatted ASCII or
unformatted binary format. The binary format is more compact, but the ASCII file can be freely transferred between
platforms with unlike hardware and/or operating systems. The file contains only that powerflow information which is
required by the Stability Program; it is not a complete base case. Type = NEW_BASE is identical in function to the
command /NEW_BASE, file = <filename> Type = NETWORK_DATA writes the complete network data file in various
WSCC-formatted dialects.

• The BPA dialect writes the network data in the form most identical to its originally submitted form.

• The WSCC dialect ignores Interarea “I” records, consolidates all “+” bus records (with the exception of +A INT
records) with the associated B-record; writes types L,E,T,TP,LM, and RZ branch records in the order of their
original submittal; writes type R records in the order adjustable tap side to fixed tap side, or hi-low; writes type
LD records in the order rectifier-inverter; writes all branch data with a minimum of X = 0.0005 p.u.; sets Vmin
on bus types BV, BX, BD, and BM to 0.0, sets non-zero Qmin on bus types B , BC, BV, and BT to zero; changes
type BE buses with non-zero Q-limits to type BQ; and changes zero Qmin and Qmax on type BE buses to type
B.

• The WSCC1 dialect includes all of the WSCC dialect mentioned above, and includes consolidating all branches
consisting of sections into a single equivalent branch.

• The PTI dialect ignores Interarea “I” records, consolidates all “+” bus records with the associated B-record; sets
Vmin on bus types BV, BX, BD, and BM to 0.0, sets non-zero Qmin on bus types B , BC, BV, and BT to zero;

2.6. Power Flow Control (PFC) 153



Interactive Power Flow

changes type BE buses with non-zero Q-limits to type BQ; and changes zero Qmin and Qmax on type BE buses to
type B.writes types L, E, T, TP, and RZ (ignores type LM) branch records in the order of their original submittal;
writes type R records in the order adjustable tap side to fixed tap side, or hi-low; writes type LD records in the
order rectifier-inverter.

In addition, type = NETWORK_DATA writes the MINIMUM or NOMINAL branch current rating in the NOMINAL
field if that option is selected; the EXTENDED ratings are written to columns 81:92 only if the BPA dialect, the
EXTENDED rating, and the 120-character record size are all selected (all are defaults). Type = CHANGES writes the
complete set of network changes to the named file.

2.6.46 SOLUTION

/ SOLUTION

This command enables solution options and special post-solution processes.:

>AI_CONTROL = CON
MON
OFF

This command sets the switches for area interchange to CONtrol, MONitor, or OFF.

The alternate voltages and LTC taps are encoded on type B and T records. See Figure 4-13 and Figure 4-14.

SOLUTION Qualiers

>BASE_SOLUTION

This command completely bypasses the solution routine and uses the base voltages in residence. It is useful for debug-
ging purposes, such as validating Network Reduction, or for examining the actual old solution quantities directly from
a base case.:

>DEBUG,TX=OFF,BUS=OFF,AI=OFF,DCMODEL=OFF
ON ON ON ON

This command turns on the following various program debug switches. See the table below.

Table 2.6.20: Debug Switches
Switch Meaning
TX: LTC
BUS: Bus Switching
AI: Area Interchange
DCMODEL: DC Modeling

>LIMITS, QRES= 0.10 ,PHA= 45.001,DEL_ANG= 1.000, DEL_VOLT= .150
<num> <num> <num> <num>

To set limits, the statement >LIMITS may be used as many times as is needed.

QRES p.u. MVAR by which a BQ, BG, or BX bus must be perturbed to revert from a state of Q-max control to a state of
V control.

PHAMinimum angle in degrees for which fixed-tap phase shifters are modeled as ideal (no loss) devices in the decoupled
starting routine.

154 Chapter 2. Contents



Interactive Power Flow

DEL_ANG Maximum angle adjustment in radians permitted in one Newton-Raphson iteration.

DEL_VOLT Maximum voltage adjustment in per unit permitted in one Newton-Raphson iteration.

> LOAD_SOLUTION, VOLTAGES =RECTANGULAR, FILE = file_name
POLAR

DEBUG = OFF, SOLUTION = BASE
ON HOTSTART

>LOAD_SOLUTION loads an alternate set of voltages and LTC taps for either the base solution (SOLUTION = BASE) or
for a hot start (SOLUTION = HOTSTART). The purpose of this command is to validate other Powerflow programs (PTI,
SVSPP) using similar base case data or to assist difficult solutions by providing an alternate starting point. The contents
of data in file_name are shown below.

Fig. 2.6.12: Alternate Voltages and LTC Taps for B Records

Fig. 2.6.13: Alternate Voltages and LTC Taps for T Records

The formats of the voltages and taps are “free-field,” meaning that the information must begin at least in the column
noted and that additional entities are separated with a blank space.

On the T record, tap is in per unit (TAP1/BASE1)/(TAP2/BASE2) or in radians for an LTC phase shifter.

2.6. Power Flow Control (PFC) 155



Interactive Power Flow

Restrictions

The following restrictions apply:

• All sets of B records must include all buses.

• The voltages must be within global limits.

• Only LTC transformers can have tap changes.

• The taps must be within LTC tap limits.

>LTC = ON
ON_NV
ON_NPS
OFF
ON_DCONLY

This is used with the following to set the control of LTC transformers.

ON Full LTC control.

ON_NV Partial LTC control (P and Q only).

ON_NPS Full LTC voltage control, no LTC phase shifter control.

OFF No LTC control.

ON_DCONLY No LTC control (except for DC commutating transformer).

Note: To obtain meaningful results with the options ON_NV, ON_NPS, or ON_DCONLY, the taps of the other LTC’s
should not change. Recall that normally with a flat start (VFLATSTART=ON) all LTC’s, including those turned off, start
at the mid tap value. To represent this action, invoke the additional command:

>MISC_CNTRL, VFLATSTART =ON, DCLP = ON, X_BUS = BPA,

OFF OFF WSCC

ITER_SUM = OFF, TSTART =0.5
ON

NUMVSTEPS = 3 PHASE_SHIFTER_BIAS = BPA

WSCC

BRIDGE_CURRENT_RATING = ON
OFF

These commands and options set the solution controls.:

X_BUS = BPA
VMAX
WSCC

Solution option for type BX buses. The BPA option accepts any discrete reactance step on a BX bus when its solution
voltage 𝑉 lies in the range of 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥. The VMAX option attempts to find the switched reactance step on
each BX such that its solution voltage is the largest voltage 𝑉 ≤ 𝑉𝑚𝑎𝑥. The WSCC option adjusts discrete steps on
a BX bus (using as an initial value the B_shunt entered on the input record) only when the voltage violates the limits
𝑉𝑚𝑖𝑛𝑜𝑟 : 𝑚𝑎𝑡ℎ :.

156 Chapter 2. Contents



Interactive Power Flow

DCLP

DC solution technique for multi-terminal DC lines. OFF uses old version. ON uses linear programming
(LP) routines — default is ON, and it should not be changed except in extraordinary circumstances.

``VFLATSTART = ON
OFF``

Starting option. ON = flat start. Initialization under flat start invokes the following conditions.
• All voltages are set 𝑉 +𝑗0 where 𝑉 is either the controlled voltage or a value between 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥.

• All special bus types BV, BQ, BG, and BX are in nominal state. (See options X_BUS.)

• All LTCs are set to a uniform starting value. All LTS phase shifters are set to a value closest to zero,
but within top limits. (See option TSTART.)

• All DC quantities invoke AC terminal conditions.

TSTART = 0.50

This sets the LTC transformer starting tap. The starting tap is based on this value together with the relative
magnitude of the variable-tap side and fixed-tap side base kVs.

If Base_varible_tap_side < Base_fixed_tap_side then

Tap = (1-TSTART) * Tmin + TSTART * Tmax

Otherwise, it is

Tap < TSTART * Tmin + (1-TSTART) * Tmax

``ITER_SUM = OFF
ON``

This switch controls printout of the solution iteration detail report.

OFF = Print out report only if a failed solution occurs.

ON = Print out report unconditionally.

``PHASE_SHIFTER_BIAS = BPA
WSCC``

This switch determines the phase shifter angle bias for type RM phase shifters. The BPA option biases the angle to zero
degrees (in recognization that non-zero degree phase shifts cause real-power loop flow and that biasing the angle to
zero effectively bias the system to lower losses since the additional loses in the loop are minimized). The WSCC option
biases the angle to the original angle specified on the TP record):

BRIDGE_CURRENT_RATING = ON OFF

This switch determines whether the converter bridge current rating is applied to the DC circuit rating. ON implies that
the bridge current rating does apply; OFF implies that it doesn’t.:

>SOL_ITER, DECOUPLED = 2, NEWTON = 30
<n> <nn>

This command sets the solution and iteration limits with the following:

DECOUPLEDUses decoupled method to iterate from flat start. INITIAL prefixes the solution iteration count.

NEWTON Uses Newton-Raphson method. At least three iterations must be specified. This is the final solu-
tion.

2.6. Power Flow Control (PFC) 157



Interactive Power Flow

>TOLERANCE, BUS = 0.001, AIPOWER = 0.001, TX = 0.001, Q = 0.001, V = 0.001
<num> <num> <num> <num> <num>

This command sets the tolerances in per unit (p.u.) for convergence testing. BUS pertains to both 𝑃𝑛𝑒𝑡 and 𝑄𝑛𝑒𝑡 (in
per unit), AI_POWER to net area interchange export (in per unit), TX to Pkm for type RP or RM LTC phase shifters or for
Qkm for type RQ and RN LTC transformers, Q to the violation of 𝑄𝑚𝑎𝑥 or 𝑄𝑚𝑖𝑛 for special bus types BQ, BG, and BX,
and 𝑉 to the desired controlled voltage by type BG buses or by type R transformers.

2.6.47 SORT_ANALYSIS

/ SORT_ANALYSIS , OVERLOAD = < BUS >, OVERVOLTAGE = < BUS >
< OWNER > < OWNER >
< ZONE > < ZONE >
< AREA > < AREA >

This controls the sort order of selected analysis listings:

• Overloaded transmission lines.

• Overloaded transformers.

• Undervoltage/overvoltage buses.

The defaults are determined by RPT_SORT options:

• Sort by <ZONE> if RPT_SORT = <ZONE>.

• Sort by <AREA> if RPT_SORT = <AREA>.

• Sort by <OWNER> if RPT_SORT is defaulted.

2.6.48 TRACE

/ TRACE, REORDER = OFF, X_REF = OFF, AUTO = OFF, Y_MATRIX = OFF, -
ON PART ON ON

FULL

OUTPUT = OFF, MERGE = OFF, CHANGE = OFF
ON ON ON

Use this command to monitor data used by the program in various functional applications. This is an aid to user data
verification.

2.6.49 TRANSFER_SENSITIVITIES

/ TRANSFER_SENSITIVITIES
> OUTAGE
L ...
E ... 1 to 100 branch records in WSCC format identifying outages
T ...
> OVERLOAD
L ...
E ... 1 to 100 branch records in WSCC format identifying lines

(continues on next page)

158 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

T ...
checked for overloads.
> TRANSFER
I ...
I ... 1 to 100 intertie records identifying transfer between
I ... two areas which will alleviate any line overloads.
I

This feature is similar to the outage simulation analysis, but with an important difference. Each overloaded line resulting
from a contingency is quantified as to the amount of area transfer (shifting of generation from one area to another) that
is necessary to alleviate the overload.

Because the problem contains three nested loops (contingency loop, line overload monitoring loop, and inter-area
transfer loop), the inter-area transfer loop is restricted to user-specified sets of transfers. Even with the present limits,
the number of transfers can be large (100 outages * 100 overloads * 100 transfers = 1,000,000).

Limitations and restrictions.

• Each / TRANSFER_SENSITIVITIES must include all three components:

> OVERLOAD > OUTAGE > TRANSFER

• Each > OVERLOAD, > OUTAGE, and > TRANSFER component must be followed with relevant branch
records of type L, E, or T, or relevant intertie records of type I.

The individual limits are:

Limit of OVERLOAD branches: 100 Limit of OUTAGE branches: 100 Limit of inter-area TRANSFER: 100

• Lines monitored for overload must have rating (nominal) > 0.0. Extended ratings are not used.

• Lines that are candidates for overloads or outages must have R < X.

2.6.50 TX_EFF

/ TX_EFF, TOTAL_LOSS = <0.04>, CORE_LOSS = <0.02>, OWNERS = < BPA >
<nn> <nn> < list >

Use this command to compare total and core transformer losses. The output can be filtered by owners. “BPA” is the
default if no owners are specified.

2.6.51 USER_ANALYSIS

/ USER_ANALYSIS, FILE = <file_name>, DEBUG = OFF, OUTPUT = <filename>
ON

This command generates customized analysis listings.

USER_ANALYSIS provides a simple macro-like programming language to perform algebraic operations involving quan-
tities available or used in the base case in residence. This capability is not related in any way to the CFLOW program-
ming library, which is much more powerful and flexible. However, USER_ANALYSIS provides an easy way to generate
simple reports without C programming.

If FILE in the above command is omitted, or <file_name> is *, the user-defined text follows in the input stream.
Otherwise, the named file becomes the input stream for this command.

2.6. Power Flow Control (PFC) 159



Interactive Power Flow

DEBUG enables the debug switch. Its output appears in an output file with the extension .pfd.

OUTPUT = <filename> places a copy of the user defined output into the file selected in <filename>.

The following quantities are available from the solved base case in residence:

• Line flows, P_in or Q_in, measured at either bus1 or bus2 terminal.

• Intertie flows, P_in or Q_in, measured at metering points.

• Scheduled intertie flow, P_sched.

• Losses by Zones, Ownerships, Areas or system totals.

• All bus quantities: P_gen, P_max, Q_gen, Q_max, Q_min, P_load, Q_load, Caps_scheduled, Caps_used, Reac-
tors_scheduled, Reactors_used, Susceptance_used, Susceptance_scheduled, Q_unscheduled. Voltage in per unit
or in kV.

Example

A simple example illustrates this concept. The records following the / USER_ANALYSIS have not been introduced.
However, the scheme is simple, and the purpose of the records is fairly obvious.

In the example, it is desired to list the sums (P_in and Q_in) of two selected branches.

/ USER_ANALYSIS, FILE = *
.
. The following symbols define P_in.
.
> DEFINE_TYPE BRANCH_P
LET A1 = ELDORADO 500*LUGO 500 1
LET A2 = MOHAVE 500*LUGO 500 1
> DEFINE_TYPE FUNCTION
LET S1 = A1 + A2
.
. The following symbols define Q_in.
.
> DEFINE_TYPE BRANCH_Q
LET B1 = ELDORADO 500*LUGO 500 1
LET B2 = MOHAVE 500*LUGO 500 1
> DEFINE_TYPE FUNCTION
LET S2 = B1 + B2
H
C Branch P_in Q_in
C (MW) (MVAR)
C
C ELDORADO/LUGO 500. 1 = $A1 $B1
C MOHAVE /LUGO 500. 1 = $A2 $B2
C
C Total = $S1 $S2

Notice that this example contains two types of data: definitions and comments.

The definitions > DEFINE_TYPE BRANCH_P, > DEFINE_TYPE BRANCH_Q, and > DEFINE_TYPE FUNCTION identify
the type of symbols that follow.

The symbols A1, A2, S1, B1, B2, and S2 are assigned to specific quantities in the network. They are evaluated after the
case is solved.

160 Chapter 2. Contents



Interactive Power Flow

In the analysis phase, the user-defined report is compiled first. The report consists of a single pass through the comment
text, substituting symbols for evaluated quantities before the line is printed. The symbols are identified with a leading
$ followed by a valid symbol name.

Let us make the assumption that the symbols above are evaluated as follows:

A1 = 859.2
A2 = 901.8
S1 = 1761.0
B1 = 245.1
B2 = 254.2
S2 = 499.3

Immediately before printing, these values are encoded into the symbol fields into the comment text. Their default
format is F6.0. The output report appears as follows.:

Branch P_in Q_in
(MW) (MVAR)

ELDORADO/LUGO 500. 1 = 859. 245.
MOHAVE /LUGO 500. 1 = 902. 254.
Total = 1761. 499.

Three types of text follow the / USER_ANALYSIS record: pagination specifications, symbol definitions, and user-
defined comment text. They are described in more detail in the following sections and are then illustrated with a
second example.

Symbol Definitions

Symbol definitions have either a one-line or multiple-line format.

The one-line format is:

> DEFINE_TYPE <symbol_type><symbol_name>=<id_of_computed_quantity>

The multiple-line format is:

> DEFINE_TYPE <symbol_type> <symbol_name> = <id_of_computed_quantity> <symbol_name> =
→˓<id_of_computed_quantity> <symbol_name> = <id_of_computed_quantity>

Some simple rules must be followed:

• All > DEFINE_TYPE data is free-field. Blanks and commas are delimiters. If a blank character is
part of a name, substitute a pound sign (#).

Example: JOHN DAY 500.0 --> JOHN#DAY 500.0

A blank circuit ID in a multicircuit line must also be entered as a pound sign (#).

Example: B = ELDORADO 500 LUGO 500 #

• All > DEFINE_TYPE data is case-insensitive. No distinction is made between upper and lower case
symbol characters. The case, however, is preserved in the analysis report as it was entered.

• The symbol names are limited to six characters.

• The symbol quantities are encoded with a default format of F6.0. The field begins in the column
position of the $ and continues the necessary field width (default is six) as specified by the format.
This default format may be changed by appending the new format to the symbol name using the
FORTRAN convention, as shown below.

2.6. Power Flow Control (PFC) 161



Interactive Power Flow

C Total = $S1/F8.1 $S2/F8.1

>DEFINE_TYPE BRANCH_P and >DEFINE_TYPE BRANCH_Q

This defines line flows, both P_in and Q_in, computed at the bus1 terminal (default) or at bus2 if an asterisk (*)
immediately follows the base kV. Below, square brackets “[” and “]”denote enclosed optional quantities.:

>DEFINE_TYPE BRANCH_P (Branch flow in MW)
LET P1 = BUS1 BASE1[*] BUS2 BASE2[*] ID
LET P2 = BUS3 BASE3[*] BUS3 BASE4[*] ID
...
LET PN = BUSM BASEM[*] BUSN BASEN[*] ID
>DEFINE_TYPE BRANCH_Q (Branch flow in MW)
LET Q1 = BUS1 BASE1[*] BUS2 BASE2[*] ID
LET Q2 = BUS3 BASE3[*] BUS3 BASE4[*] ID
...
LET QN = BUSM BASEM[*] BUSN BASEN[*] ID

>DEFINE_TYPE INTERTIE_P or DEFINE_TYPE INTERTIE_Q

This defines the area interchange flow, either 𝑃𝑖𝑛 (MW) or 𝑄𝑖𝑛 (MVAR). Either quantity is computed at the tie-line
metering points.:

>DEFINE_TYPE INTERTIE_P (Interchange flow in MW)
LET I1 = AREA_1 AREA_2
LET I2 = AREA_3 AREA_4
...
LET IN = AREA_M AREA_N
>DEFINE_TYPE INTERTIE_Q (Interchange flow in MVAR)
LET J1 = AREA_1 AREA_2
LET J2 = AREA_3 AREA_4
...
LET JN = AREA_M AREA_N

> DEFINE_TYPE INTERTIE_P_SCHEDULED

This defines the scheduled area intertie flow (I records) as 𝑃𝑖𝑛 (MW).:

>DEFINE_TYPE INTERTIE_P_SCHEDULED (Scheduled Interchange flow in MW)
LET I1 = AREA_1 AREA_2
LET I2 = AREA_3 AREA_4
...
LET IN = AREA_M AREA_N

162 Chapter 2. Contents



Interactive Power Flow

>DEFINE_TYPE OWNER_LOSS AREA_LOSS ZONE_LOSS SYSTEM_LOSS

>DEFINE_TYPE OWNER_LOSS
LET O1 = BPA, O2 = PGE, etc.
>DEFINE_TYPE AREA_LOSS,
LET A1 = NORTHWEST, etc.
>DEFINE_TYPE ZONE_LOSS,
LET Z1 = NA, Z2 = NB, etc.
>DEFINE_TYPE SYSTEM_LOSS,
LET SYSTOT

This defines losses by Area, Zone, Ownership, or total system.

>DEFINE_TYPE FUNCTION

This defines the following records as containing algebraic operators:

+, -, *, /, **, <, >, (, and ).

>DEFINE_TYPE FUNCTION
LET T1 = (Z1 ** 2 + Z2 ** 2 ) ** 0.5
LET T2 = (Z1 > 1200.0) * 100.0

T1 evaluates as the square root of the sum of the squares Z1 and Z2. T2 evaluates as 100 times the excess of Z1 over
1200.0. Some simple rules must be followed:

• All symbols referenced on the right-hand side must be defined prior to reference.

• Parentheses can be nested to any level. Operation begins inside the innermost level.

• A single function is limited to 30 symbols and operators.

• Operators have the following precedence (highest to lowest):

**
*,/
>,<
+,-

FUNCTION admits simple trigonometric (and one absolute value) functions where the relevant arguments or returned
values are expressed in radians:

sin(), cos(), tan(), arcsin(), arccos(), arctan(), and abs().

Here is an example: compute the voltage angle difference between two buses, KEELER 500 and PAUL 500.

> DEFINE_TYPE BUS_INDEX
LET A = KEELER 500
LET B = PAUL 500
> DEFINE_TYPE FUNCTION
LET DIF = 57.29578 * (ARCTAN(A.VI/A.VR) - ARCTAN(B.VI/B.VR))

Here, A.VR and A.VI are the real and imaginary components to the per unit voltage at KEELER 500. Similarly, B.VR
and B.VI for PAUL 500. The ARCTAN function returns the angle in radians. The difference is then converted to degrees.

2.6. Power Flow Control (PFC) 163



Interactive Power Flow

>DEFINE_TYPE OLDBASE

This defines pertinent information from the retrieved OLD_BASE data file. An example will demonstrate the use of
these symbols.

>DEFINE_TYPE OLDBASE
LET A = DISK
LET B = DIR
LET C = FILE
LET D = CASE
LET E = DATE
LET F = TIME
LET G = DESC
LET H = PFVER
LET I = USER

C OLD_BASE CASE = $D/A10
C DESCRIPTION $G/A20
C
C GENERATED ON $E/A10 $F/A10
C OWNER $I/A10
C POWERFLOW VERSION $H/A10

> DEFINE_TYPE BUS_INDEX

This defines the following records as bus indices. This index is used in conjunction with a coded suffix to obtain specific
bus quantities.

Valid suffixes and their associated bus quantities are shown the table below.

164 Chapter 2. Contents



Interactive Power Flow

Table 2.6.21: Suffixes for Bus Quantities
Suffix Quantity
.PL P_load in MW
.QL Q_load in MVAR
.PG P_gen in MW
.PM P_max in MW
.QG Q_gen in MVAR
.QM Q_max in MVAR
.QN Q_min in MVAR
.RKK Real part of driving point admittance (YKK=RKK+jXKK). Also known as short circuit admittance.
.XKK Imaginary part of driving point admittance (YKK=RKK+jXKK). Also known as short circuit admittance.
.V V in per unit
.VA Voltage angle in degrees
.VR V in per unit, real component
.VI V in per unit, imaginary component
.VK V in kV
.VM V_max in per unit
.VN V_min in per unit
.C Q_caps used in MVAR
.CM Q_caps scheduled in MVAR
.R Q_reactors used in MVAR
.RM Q_reactors scheduled in MVAR
.QU Q_unscheduled in MVAR
.DVQ dV/dQ sensitivity kV/MVAR
.DVP dV/dP sensitivity in kV/MW.
.S Total reactive used (Capacitors or Reactors) in MVAR.
.SM Total reactive available (Capacitors or Reactors) in MVAR

An example will demonstrate these concepts.

Compute the generator current (in amps) of Paul 500.0.

> DEFINE_TYPE BUS_INDEX
LET A = PAUL 500.0
> DEFINE_TYPE FUNCTION
LET B = (A.PG ** 2 + A.QG ** 2) ** 0.5
LET C = 1000.0 * B / (3.0 ** 0.5 * A.VK)

Here symbol B contains the generation in MVA, and C contains the current in amps.

> DEFINE_TYPE BRANCH_INDEX

This defines the following records as branch indices. This index is used in conjunction with a coded suffix to obtain
specific branch quantities.

Valid suffixes and their associated branch quantities are shown in the table below.

2.6. Power Flow Control (PFC) 165



Interactive Power Flow

Table 2.6.22: Suffixes for Branch Quantities
Suffix Quantity
.TAP1 Tap1 in kV for a T or in degrees for a TP record
.TAP2 Tap2 in kV for a T or TP record
.TAP The discrete tap number (lowest tap = 1) for an LTC transformer.
.TAPS The total number of discrete taps for a LTC transformer.

An example will demonstrate these concepts.

Show the tap, the discrete tap number, and the number of discrete taps for a transformer FRANKLIN 115/230

>DEFINE_TYPE LINE_INDEX
LET FR = FRANKLIN 115.0 FRANKLIN 230.0
C TX AT TAP TAP # # OF TAPS
C FRANKLIN $FR.TAP2/F7.3 $FR.TAP/F3.0 $FR.TAPS/F3.0

Here symbol B contains the generation in MVA, and C contains the current in amps.

> DEFINE_TYPE ZONE_INDEX

This defines the following records as zone indices. This index is used in conjunction with a coded suffix to obtain
specific zone quantities.

Valid suffixes and their associated zonal quantities are shown in the table below.

Table 2.6.23: Suffixes for Zonal Quantities
Suffix Zonal Quantity
.PG P_gen in MW
.QG Q_gen in MVAR
.PL P_load in MW
.QL Q_load in MVAR
.PLS P_loss in MW
.QLS Q_loss in MVAR
.PSH Installed (Scheduled) P_shunt in MW
.QSH Installed (Scheduled) Q_shunt in MVAR
.SCAP Installed (Scheduled) Q_cap in MVAR
.SREK Installed (Scheduled) Q_reactors in MVAR
.UCAP Used Q_cap in MVAR
.UREK IUsed Q_reactors in MVAR

The following example illustrates these concepts.

> DEFINE_TYPE ZONE_INDEX
LET ZA = NA
LET ZB = NB
LET TP = ZA.PLS + ZB.PLS
LET TQ = ZA.QLS + ZB.QLS
C
C Zone Ploss Qloss
C (MW) (MVAR)
C

(continues on next page)

166 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

C NA $ZA.PLS $ZA.QLS
C NB $ZB.PLS $ZB.QLS
C- - - - - - - - - - - - - - - - - - - - - - - - -
C Total $TP $TQ
C

The symbol ZA.PLS contains the losses in MWs for zone NA.

> DEFINE_TYPE OWNER_INDEX

This defines the following records as owner indices. This index is used in conjunction with a coded suffix to obtain
specific owner quantities.

Valid suffixes and their associatedownership quantities are shown in the table below.

Table 2.6.24: Suffixes for Ownership Quantities
Suffix Onwership Quantity
.PG P_gen in MW
.QG Q_gen in MVAR
.PL P_load in MW
.QL Q_load in MVAR
.PLS P_loss in MW
.QLS Q_loss in MW
.PSH Installed (Scheduled) P_shunt in MW
.QSH Installed (Scheduled) Q_shunt in MVAR
.SCAP Installed (Scheduled) Q_cap in MVAR
.SREK Installed (Scheduled) Q_reactors in MVAR
.UCAP Used Q_cap in MVAR
.UREK IUsed Q_reactors in MVAR

The following example illustrates these concepts.

> DEFINE_TYPE OWNER_INDEX
LET ZA = BPA
LET ZB = PPL

DEFINE_TYPE FUNCTION
LET TP = ZA.PLS + ZB.PLS
LET TQ = ZA.QLS + ZB.QLS

C
C Onwer Ploss Qloss
C (MW) (MVAR)
C
C BPA $ZA.PLS $ZA.QLS
C PPL $ZB.PLS $ZB.QLS
C- - - - - - - - - - - - - - - - - - - - - - - - -
C Total $TP $TQ
C

The symbol ZA.PLS contains the losses in MWs for owner BPA.

There are three remaining types of indices:

2.6. Power Flow Control (PFC) 167



Interactive Power Flow

> DEFINE_TYPE SYSTEM
> DEFINE_TYPE INTERTIE_INDEX
> DEFINE_TYPE AREA_INDEX

These commands define following records as system, intertie, and area indices, respectively. Their use is similar to the
bus and zone indices.

> DEFINE_TYPE TRANSFER_INDEX

This defines the following records as transfer indices. This index is used in conjunction with a coded suffix to obtain
specific transfer quantities.

Valid suffixes and their associated transfer quantities are shown in the table below.

Table 2.6.25: Suffixes for Branch Quantities
Suffix Quantity
.RKM Real part of transfer impedance (p.u.)
.XKM Imaginary part of transfer impedance (p.u.)
.DVP Sensitivity d(V1-V2)/dP in kV/MW
.DVQ Sensitivity d(V1-V2)/dQ in kV/MVAR
.DTP Sensitivity d( )/dP in degrees/MW

The transfer impedance is the point-to-point impedance between two buses. It would represent the incremental (com-
plex) voltage change due to a 1.0 p.u. current injection into bus1 in conjunction with a -1.0 injection out of bus2. It
represents the impedance of the entire network with respect to the two terminal nodes.

The transfer sensitivity is the sensitivity of the voltage or angle difference between two buses with respect to a 1 MW
or MVAR change in injection between two buses.

The following example obtains the transfer impedance and transfer sensitivities between COULEE 2 13.8 - JOHN DAY
500 and between JOHN DAY 500 - MALIN 500.

> DEFINE_TYPE TRANSFER_INDEX
LET TX1 = COULEE 500 JOHN#DAY 500
LET TX2 = JOHN#DAY 500 MALIN 500
C
C TRANSFER IMPEDANCES R (P.U.) X (P.U.)
C
C COULEE 500 JOHN DAY 500 $TX1.RKM/E12.5 $TX1.XKM/E12.5
C JOHN DAY 500 MALIN 500 $TX2.RKM/E12.5 $TX2.XKM/E12.5
C
C TRANSFER SENSITIVITIES dV/dP (kV/MW) dV/dQ (kV/MVAR) dT/dP (deg/MW)
C
C COULEE 500 JOHN DAY 500 $TX1.DVP/E12.5 $TX1.DVQ/E12.5 $TX1.DTP/E12.5
C JOHN DAY 500 MALIN 500 $TX2.DVP/E12.5 $TX2.DVQ/E12.5 $TX1.DTP/E12.5

168 Chapter 2. Contents



Interactive Power Flow

Pagination Specifications

Pagination specifications pertain to headers and subheaders. The Header record is the most important record. It has an
H in column 1.

Each user-defined report must begin with a separate header record. The contents of this record become the first sub-
header. Additional subheaders can be appended to the report.

The header and subheaders are listed at the top of each page on the user-defined analysis report.

Following the header and optional subheader records are 120-character user-formatted comment text, identified with a
C in column 1. These records define the user-defined analysis report.

Only columns 3-120 are used. Column 1 (containing the C) is ignored in the report, while column 2 is interpreted as
Fortran carriage control:

” ” = single line spacing

“0” = double line spacing

Symbols whose character fields are to be encoded with numerical values computed from the solved case in residence
are prefixed with a $ and suffixed optionally with a format specification.

Examples

C WEST-OF-RIVER FLOW/NORTH= $T1/F8.0 WEST-OF RIVER FLOW/SOUTH= $T2/F8.0
C ------------------------ -----------------------
C ELDORADO/LUGO 500. 1 = $A1/F8.0 PALOVRDE/DEVERS 500. 1 = $A9/F8.0

There are two symbol substitutions in the first comment line: T1 and T2. Both elect an optional format, which is F8.0.
By coincidence, the symbol field with $T1/F8.0 is eight characters, the same as the Format specification. If the Format
was larger, substitution would overwrite additional columns on the right. If the format was smaller, only the left-most
characters would be used with a blank fill on the remaining (unused) field.

The second comment line has no substitution. The third has two symbol substitutions, similar to the first comment line.

If no format specification is used, the default (F6.0) is used. In this instance, it would be plausible to use five-character
symbol names. When the $ is included, the substituted text is the same field width as the original text. The pro-
gram limits are 500 comment lines including headers and subheaders. No symbol substitution occurs on headers or
subheaders.

If a comment refers to an undefined symbol, a warning is issued, with the questionable fields flagged with a string
of ??????``s. The limits are 500 lines of symbol definition and 1000 symbols. Comment text
(.`` in column 1) is excluded.

2.6.52 PFC Examples

This section gives several examples of PFC files that can be used with the bpf process.

2.6. Power Flow Control (PFC) 169



Interactive Power Flow

Base Case Example

Here is a basic powerflow run that contains all data in the control file (ninebus.pfc).

( POWERFLOW,CASEID=NINEBUS, PROJECT = EXAMPLES )
/ HEADER
H WSCC Nine Bus Base Case
/ COMMENT
C
C CASEB-1_ NINE-BUS CASE, ON CARDS, THAT IN ADDITION TO TESTING
C THE FEATURES OF CASE A-1, ALSO FEATURES_TRANSFORMERS
C AND SUBTYPE "E" BUSES.
C
/ P_INPUT_LIST,FULL
/ P_OUTPUT_LIST,FULL
/ AI_LIST=NONE
/ P_ANALYSIS_RPT,LEVEL = 4
/ F_ANALYSIS_RPT,LEVEL = 1
/ NEW_BASE, FILE = ninebus.bse
/ NETWORK_DATA
B GEN1 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN2 HI 230 1 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN3 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B STA A 230 1125.0 50.0 0.0 0.0 -0.0 -0.0 -0.0
B STA B 230 2 90. 30.
B STA C 230 2100.0 35.0 0.0 0.0 -0.0 -0.0 -0.0
BS GEN1 16.5 2 -0.0 -0.0 0.0 0.0 71.6 -0.0 -0.01040
BE GEN2 18 1 -0.0 -0.0 0.0 0.0 163.0 -0.0 -0.01025
BE GEN3 13.8 2 -0.0 -0.0 0.0 0.0 85.0 -0.0 -0.01025
L GEN1 HI 230 STA B 230 1 1700 9200 7900
L GEN1 HI 230 STA B 230 2 1700 9200 7900
L GEN1 HI 2302STA A 230 1 85 88
L GEN3 HI 230 STA B 230 39 17 179
L STA C 230 GEN3 HI 230 1190 10080 10450
L STA A 230 GEN2 HI 230 32 161 153
L GEN2 HI 2302STA C 230 85 72 745
T GEN1 HI 230 GEN1 16.5 5760 23000 1650
T GEN2 HI 230 GEN2 18 6250 23000 1800
T GEN3 HI 230 GEN3 13.8 5860 23000 1380
(STOP)

A more convenient method to perform the preceding setup is to use a NETWORK_DATA command and provide the network
data portion (the power system network) in a separate file and similarly a INCLUDE_CONTROL command and provide
the control comands in a separate file as well. The PFC file would look like this:

( POWERFLOW,CASEID=NINEBUS, PROJECT = EXAMPLES )
/ HEADER
H WSCC Nine Bus Base Case
/ COMMENT
C
C CASEB-1_ NINE-BUS CASE, ON CARDS, THAT IN ADDITION TO TESTING
C THE FEATURES OF CASE A-1, ALSO FEATURES TRANSFORMERS
C AND SUBTYPE "E" BUSES.
C

(continues on next page)

170 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

/ NEW_BASE, FILE= ninebus.bse
/ INCLUDE_CONTROL,FILE = ninebus.ctl
/ NETWORK_DATA, FILE = ninebus.net
(STOP)

Where ninebus.ctl contains:

/ P_INPUT_LIST,FULL
/ P_OUTPUT_LIST,FULL
/ AI_LIST=NONE
/ P_ANALYSIS_RPT,LEVEL = 4
/ F_ANALYSIS_RPT,LEVEL = 1

and ninebus.net contains:

B GEN1 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN2 HI 230 1 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B GEN3 HI 230 2 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0
B STA A 230 1125.0 50.0 0.0 0.0 -0.0 -0.0 -0.0
B STA B 230 2 90. 30.
B STA C 230 2100.0 35.0 0.0 0.0 -0.0 -0.0 -0.0
BS GEN1 16.5 2 -0.0 -0.0 0.0 0.0 71.6 -0.0 -0.01040
BE GEN2 18 1 -0.0 -0.0 0.0 0.0 163.0 -0.0 -0.01025
BE GEN3 13.8 2 -0.0 -0.0 0.0 0.0 85.0 -0.0 -0.01025
L GEN1 HI 230 STA B 230 1 1700 9200 7900
L GEN1 HI 230 STA B 230 2 1700 9200 7900
L GEN1 HI 2302STA A 230 1 85 88
L GEN3 HI 230 STA B 230 39 17 179
L STA C 230 GEN3 HI 230 1190 10080 10450
L STA A 230 GEN2 HI 230 32 161 153
L GEN2 HI 2302STA C 230 85 72 745
T GEN1 HI 230 GEN1 16.5 5760 23000 1650
T GEN2 HI 230 GEN2 18 6250 23000 1800
T GEN3 HI 230 GEN3 13.8 5860 23000 1380

Change Case Example

Here is an example of loading a system from a solved old base case, and make data changes, and save a new base.:

( POWERFLOW, CASEID = TEST-CHG, PROJECT = TEST-WSCC-DATA)
/ NEW_BASE, FILE = 9BUSNEW.BSE
/ COMMENTS
C CASEB-1_ NINE-BUS CASE, ON CARDS, THAT IN ADDITION TO TESTING THE
C FEATURES OF CASE A-1, ALSO FEATURES TRANSFORMERS AND
C SUBTYPE "E" BUSES.
C THE BUS_BRANCH FILE AND THE CHANGE FILE ARE REMOTE
/ INCLUDE_CONTROLS, FILE = TESTCONT.CTL
/ OLD_BASE, FILE= ninebus.bse
/ CHANGES, FILE = CHANG.DAT
( STOP - END OF TEST )

2.6. Power Flow Control (PFC) 171



Interactive Power Flow

Note: PFC language commands are not performed in the order they are encountered in the file, but rather in the order
the bpf program decides is logical.

Merge Case Example 1

Here is an example of merging two systems defined from sepearate solved old base files.:

( POWERFLOW, CASEID = TEST-MERGE, PROJECT = TEST-MERGE_OLD_BASE )
/COMMENTS
C CASE 2 - TEST BASE MERGE BY MERGING TWO IDENTICAL BASE SYSTEMS.
C TWO MUTUALLY EXCLUSIVE SUBSYSTEMS ARE INTEGRATED TO
C REGENERATE THE ORIGINAL SYSTEM.
C
C EACH SYSTEM IS BUILT FROM DIFFERENT AREAS OF THE SAME OLDBASE
.
. control options
.
/ P_INPUTLIST,FULL
/ F_INPUTLIST,NONE
/ P_OUTPUTLIST,FULL
/ F_OUTPUTLIST,NONE
/ AILIST=FULL
.
/ NEW_BASE, FILE = MERGOLD.BAS
.
. DEFINE SUBSYSTEM "AREA 1"
.
/ MERGE_OLD_BASE, SUB_SYSTEM_ID = AREA-1, OLD_BASE = TESTDC.BAS
> USE_AIC
> SAVE_AREAS
A AREA 1
.
. DEFINE SUBSYSTEM "AREA 2"
/ MERGE_OLD_BASE, SUB_SYSTEM_ID = AREA-2,OLD_BASE = TESTDC.BAS
> SAVE_ AREAS
A AREA 2
.
. SUBSYSTEMS ARE NOW MERGED
.
. ( CHANGES ) may now follow
.
( STOP )

172 Chapter 2. Contents



Interactive Power Flow

Merge Case Example 2

Here is an example of merging two topologically overlapping networks into one consolidated network and solvubg the
network, creating a new base to be called J86JFY82. Each of the original networks is to be appropriately modified
before the merger. The first network is a WSCC base case saved as 86J201.BSE which must be modified by saving
areas, excluding buses, renaming buses and excluding certain branches. The second network is the BPA system which
will be extracted from the branch file BDFY82W using the extraction date Jan 1986.:

(POWERFLOW, CASEID = J86FY82, PROJECT = BASEMERGE)
/NEWBASE FILE = [APF]J86FY82.BSE
.
.Note: composite network will be solved with defaults.
.
/MERGE_OLD_BASE,SUBSYSID = WSCC_NETWORK,OLD_BASE=86J201.BSE
>SAVE_AREAS
.....
..... "A" - records - name fields only
.....
>EXCLUDE_BUSES
.....
..... "B" - records - name fields only
.....
>RENAME_BUSES
.....
..... rename table
.....
>EXCLUDE_BRANCHES
.....
..... "L" - records - name fields only
.....
/MERGE_NEW_BASE,SUBSYSID = BPA_NETWORK,BRANCH_DATA=BDFY84,DATE=186
.....
..... "B" - records for BPA system
.....
/CHANGES
.....
..... change records
.....
(STOP)

Reduction Case Example

Here is an example of reducing an existing network to a desired size and solving the reduced network. Reduction is
achieved by retaining only specified zones from the original system. Produce full input/output listings on microfiche.
Partial input/output listings (restricted to certain specified zones) will be printed on paper. Give full analysis report on
both paper and fiche. In solving the network, regulating transformers will be activated and area-interchange control
will be switched to control mode. Provide full listing of area interchange flows.:

(POWERFLOW, CASEID = A86FY81RED, PROJECT = SAMPLE_PCL)
/OLDBASE, FILE = A8601FY81.BA2
/REDUCTION
>SAVE_ZONES,NA,NB,NC,ND,NE,NF,NG,NH,NI,NJ,NR

(continues on next page)

2.6. Power Flow Control (PFC) 173



Interactive Power Flow

(continued from previous page)

>SAVE_ZONES 19,17,20,08,PR,27,16
/P_INPUT_LIST, ZONES=NA,NB,NC,ND,NE,NF,NG,NH,NI,NJ,NK
/P_INPUT_LIST, ZONES = 19,17,20,08,PR
/P_OUTPUT_LIST, ZONES= NA,NB,NC,ND,NE,NF,NG,NH,NI,NJ,NK
/P_OUTPUT_LIST, ZONES= 19,17,20,08,PR
/LTC = ON
/AI_CONTROL = CON
/AI_LIST = FULL
/P_ANALYSIS_RPT, LEVEL = 4
(STOP)

2.7 Powerflow Command Language (PCL)

2.7.1 Introduction

The commands listed below are those currently available in the Powerflow Command Language (PCL). This language
was developed to meet the needs of communication between the GUI and the Powerflow server (ipfsrv), but is also
available for direct user entry via the Command Dialog in the GUI or loading of a PCL command file in the GUI, and
via the ipfbat command line process, by invoking the same command file. However, since ipfsrv is expecting these
commands to have been generated by another program, it expects them to be syntactically perfect and legally ordered.
There is no checking of input, or confirmation procedure, or chance to edit and re-enter commands. A typo can easily
crash the program.

The GUI process sends these commands in response to various button pushes, and all checking, etc. is done before
a command is ever sent. The generated text strings are placed in a buffer which is sent over an interprocess commu-
nications channel open to the server process (ipfsrv). The server process on its end interprets these commands and
responds by changing its memory resident case data, querying the case data, sending data back to the GUI, etc. CFLOW
library routines also send and receive these commands in the same manner.

PCL has some overlap with the PFC command language used in the batch Powerflow (bpf) program. For those com-
mands which do the same things (e.g. OLD_BASE, CHANGES, etc.) the syntax is identical. However, many of the batch
commands are not available in PCL, and of course PCL contains many commands which are not needed by bpf. The
same conventions on case and spacing apply to both languages.

• Upper, lower, or mixed case are legal: OLD_BASE, Old_Base, oldbase.

• Spaces between command elements are ignored: /oldbase,file=std.bse and / OLD_base , File =
std.bse are equivalent.

• Underscore may be used within command words if desired: oldbase, old_base, O_L_D__B_A_S_E.

Table 2.7.1: IPC Commands Quick Descriptions
Command Description Section
(END) Terminates a data stream following a command. (END)
*[EOM] Used in the Command Dialog to launch a command stream. *[EOM]
``CFLOW` Launches a CFLOW program. CFLOW
CHANGES Introduces system data change records. CHANGES
GET_DATA Fetches data from the Powerow process. GET_DATA
GET_DATA, TYPE = A_DATA Retrieves all type A input data records in WSCC format. GET_DATA, TYPE = A_DATA
GET_DATA, TYPE = AREA_DATA Initializes the user analysis arrays. pcl-get-data-area-data
GET_DATA, TYPE = AREA_LIST Loads the area list dialog into the Network Data Edit Dialog and the Reports Dialog. GET_DATA, TYPE = AREA_LIST

continues on next page

174 Chapter 2. Contents



Interactive Power Flow

Table 2.7.1 – continued from previous page
Command Description Section
GET_DATA, TYPE = BSEKV_LIST Loads the base kV list dialog into the Network Data Edit Dialog and Reports Dialog. GET_DATA, TYPE = BSEKV_LIST
GET_DATA, TYPE = BUS_EXISTS Inquires whether a given bus exists. GET_DATA, TYPE = BUS_EXISTS
GET_DATA, TYPE = BUS_LIST Loads the bus list dialog in the Alpha Search, Network Data Edit, and Reports Dialogs. GET_DATA, TYPE = BUS_LIST
GET_DATA, TYPE = BUS_VOLTAGES Returns a list of all bus voltages. GET_DATA, TYPE = BUS_VOLTAGES
GET_DATA, TYPE = CONNECTION Retrieves the network connection diagram for a given set of buses.
GET_DATA, TYPE = COUNT Computes the number of network data records satisfying the filter criteria in a NETWORK_DATA command.
GET_DATA, TYPE = FILE_EXISTS Inquires whether a named les exists.
GET_DATA, TYPE = INITIALIZE_DEF Initializes the user analysis arrays.
GET_DATA, TYPE = INPUT Retrieves the full network data for a bus.
GET_DATA, TYPE = I_DATA Retrieves all I type data in WSCC format.
GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION Computes transmission line impedance data given tower geometry and conductor characteristics.
GET_DATA, TYPE = LOAD_AREA Initializes arrays associated with area interchange data.
GET_DATA, TYPE = SUB_DEFINE Loads the user analysis arrays.
GET_DATA, TYPE = LOAD_REF_AREA Initializes arrays associated with area interchange data.
GET_DATA, TYPE = LOAD_REF_BASE Loads a reference base case history file for the purpose of base case comparison or plot comparisons.
GET_DATA, TYPE = NETWORK_DATA Filters network data records.
GET_DATA, TYPE = OUTAGES Retrieves the list of outaged data for the Report Dialog.
GET_DATA, TYPE = OUTPUT General purpose command for accessing virtually the entire network data base.
GET_DATA, TYPE = OWNER_LIST Loads the ownership list dialog into the Reports Dialog and the Network Data Edit Dialog.
GET_DATA, TYPE = RECORD_LIST Loads the record type list dialog into the Reports Dialog and the Network Data Edit Dialog.
GET_DATA, TYPE = COMMENTS Obtains the area interchange output data from the WSCC-formatted input area records.
GET_DATA, TYPE = REF_OUTPUT General purpose command for accessing virtually the entire network data base.
GET_DATA, TYPE = STATUS Retrieves the case description.
GET_DATA, TYPE = SUB_DEFINE Performs character string substitution using computed base case quantities.
GET_DATA, TYPE = COMMENTS Retrieves all IPF system parameters describing the case in residence.
GET_DATA, TYPE = ZONE_LIST Loads the zone list dialog into the Reports Dialog and the Network Data Edit Dialog.
INITIALIZE Starts up powerflow engine.
NETWORK_DATA Specifies that a network data file is to be loaded into the powerflow engine.
NEW_BASE Saves the solved, resident base case.
OLD_BASE Loads a previously solved powerflow case file.
PLOT Plots a powerflow coordinate file
PUT_DATA, TYPE = COMMENTS Denes IPF system parameters which either describe the case in residence or modify parameters which will influence certain processes (solution, debugging).
QUIT, EXIT Executes closing procedures and exits the powerflow engine.
REPORTS, SELECT AI_SUMMARY Retrieves filtered area interchange output data.
REPORTS, SELECT BUS_BR_INPUT Retrieves filtered WSCC-formatted bus and branch input data records.
REPORTS, SELECT BUS_BR_OUTPUT Retrieves filtered bus and branch output records.
REPORTS, SELECT BUS_INPUT Retrieves filtered WSCC-formatted bus input data records.
REPORTS, SELECT BUS_UVOV Retrieves ltered under/over voltage bus output data.
REPORTS, SELECT LINE_COMPARISON Retrieves filtered line loading differences between the base case in residence and a selected base case history data le.
REPORTS, SELECT NETWORK_CHANGES Retrieves the list of all accumulated changes performed on the base case in residence.
REPORTS, SELECT NETWORK_DELETIONS Retrieves the list of all deleted network data in WSCC format.
REPORTS, SELECT OVERLOADED_LINES Retrieves filtered overloaded branch output data.
REPORTS, SELECT OVERLOADED_TXS Retrieves filtered overloaded transformer output data.
REPORTS, SELECT PHASE_SHIFTER Retrieves the phase shifter report.
REPORTS, SELECT TIE_LINE_SUMMARY Retrieves filtered area tie line ows.
REPORTS, SELECT VOLTAGE_COMPARISON Retrieves filtered voltage differences between the resident base case and a selected base case history data file.
SAVE_FILE Saves the solved resident base case in a named file.
SOLUTION Causes the powerflow engine to solve the currently resident base case.
SYSCAL Passes a system command to the operating system.

2.7. Powerflow Command Language (PCL) 175



Interactive Power Flow

2.7.2 General

(END)

Use this command to terminate a data stream following a command in a PCL command file. Some commands which
would be followed by data are /CHANGES, FILE=* and /PLOT.

Example:

/Network_Data, File = *
B ARAPAHOA115.
BS ARAP1 13.8 3.5 45. 1.05
B SHERIDAN115. 41.5 11.8
T ARAPAHOA115. ARAP1 13.8 .00672.14684.00064-00313115.5 13.2
L ARAPAHOA115. SHERIDAN115. .00261.00657 .0004
(end)

*[EOM]

This is used when entering commands in the Command Dialog of the GUI, to indicated that the line or lines you have
entered into the buffer should be send to ipfsrv. When the GUI generates this “End of Message” string, it has all six
characters; however, the first two characters are all that are required to be entered.

For Command Dialog usage, this also serves in place of the (END) command above. But unlike it, this must be entered
after every command, when using the Command Dialog.

INITIALIZE

This command starts up the powerflow engine, and therefore will never be entered by a GUI user, but is required at the
beginning of every ipfbat command file. It calls p_pfinit.f with the following parameters.:

integer function p_pfinit (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/INITIALIZE

QUIT, EXIT

This command in either form executes closing procedures and exits the powerflow engine. It calls p_pfexit.f with
the following parameters.:

integer function p_pfexit (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains either of the following lines of information.:

176 Chapter 2. Contents



Interactive Power Flow

/QUIT
/EXIT

SYSCAL

This command passes a string to the operating system for execution. It is used by the GUI to send a plot to the currently
selected print destination, but it will pass any command string.

Example:

/SYSCAL
lp -d COMPAQ20 -T ps 0102hw1.ps
(END)

Warning: This command is effectively a command line injection vulnerability if running separate client and
server.

2.7.3 File Opening and Saving

NETWORK_DATA

This command specifies that a network data file is to be loaded into the ipfsrv. It calls p_gtnetdat.f with the
following parameters.:

integer function p_gtnetdat (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

Example:

/NETWORK_DATA, FILE=0102hw1.net

For a full description of the command /NETWORK_DATA, see the NETWORK_DATA. Successful execution should return
an IPF state of 2.

NEW_BASE

This command saves the solved base case in residence in the named file. It calls p_newbse.f with the following
parameters.:

integer function p_newbse (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information:

2.7. Powerflow Command Language (PCL) 177



Interactive Power Flow

/NEW_BASE, FILE = <filename>
C < case comments - three records maximum >
C < case comments - three records maximum >
C < case comments - three records maximum >

The comment records in the above command are optional. Successful execution should return an IPF state of 6.

OLD_BASE

This command specifies that a previously solved power flow case is to be loaded from the specified file and used as the
base system for the current request. It calls p_gtbase.f with the following parameters.:

integer function p_gtbase (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

Example:

/OLD_BASE, FILE = 97hs1a.bse

Successful execution should return an IPF state of 6.

SAVE_FILE

This command saves the solved base case in residence in the named file in one of four forms. One of these forms is
NEW_BASE, described previously, and admits a redundancy into the command procedure.

This command calls p_svfile.f with the following parameters.:

integer function p_svfile (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains any of following information.:

/SAVE_FILE, TYPE = SYSTEM_CHANGES, FILE = <filename>

/SAVE_FILE, TYPE = NEW_BASE, FILE = <filename>

/SAVE_FILE, TYPE = NETWORK_DATA, FILE = <filename>, ...

/SAVE_FILE, TYPE = WSCC_BINARY_STABILITY, FILE = <filename>
WSCC_ASCII_STABILITY

/SAVE_FILE, TYPE = NETWORK_DATA,
FILE = < filename >,
DIALECT = < value >, BPA | WSCC | WSCC1 | PTI
RATINGS = < value >, EXTENDED | NOMINAL | MINIMUM
SIZE = < value >, 120 | 80

See ipfnet, for a complete description of the Dialect, Ratings, and Size options when saving a network data file.

178 Chapter 2. Contents



Interactive Power Flow

2.7.4 Processes

CFLOW

This command launches a CFLOW program if it is in your directory search path. The following works on a VAX VMS
system if <program name> is defined as a foreign command::

/CFLOW
PROGRAM = my_cflow_program
<program name>:== $dev:[dir]file.exe

ARGS = is required only if the CFLOW program requires command line arguments other than the socket number. Any
I/O that the CFLOW program does to standard input or standard output will be to and from the same terminal window
that the ipfbat program is run from (intermixed with any I/O from the ipfbat program).

CHANGES

This command introduces system data change records. It calls p_change.f with the following parameters.:

integer function p_change (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

Examples::

/CHANGES, FILE = 0102hw1.chg
/changes, file = *
B D ARAPAHOA115.
BEM ARAP1 13.8 1.05
T M ARAPAHO 115. ARAP1 13.8 .00672.
(end)

PLOT

This command creates a PostScript diagram (map) file, using a coordinate file and the currently loaded base case. It calls
plot_load.f, which is the main routine for the batch program ipfplot. The batch program takes three parameters,
as shown below, and uses the second case, if provided, to produce difference plots.:

subroutine plot_load (coord_file, base1_file, base2_file)
character * 60 coord-file, base1_file, base2_file

Difference plots are not available from the GUI or ipfbat. The parameters required in the PCL formulation are a
coordinate file and the name of a PostScript output file. Records which follow these two file names are interpreted as
comments to be placed on the map, following any comments (C records) which occur in the coordinate file. However,
if a comment begins with an ampersand (&) or an “at” symbol (@), it will not be printed. The & precedes the name of
at most one auxiliary coordinate file to be included on the map. The @ signals the presence of a plot option which will
override that option in the coordinate file. See Network Diagrams for complete information on plotting diagrams. See
ipfplot for detailed information on use of the ipfplot program.

Example::

2.7. Powerflow Command Language (PCL) 179



Interactive Power Flow

/plot
hvmap.cor
98hw3_study.ps
Transfer Study for PAST
Prepared by A. P. Planner
&transfer.cor
@OP Offset=12.7 18.9
(end)

SOLUTION

This command causes the powerflow engine to solve the currently resident base case. It calls p_solton.f with the
following parameters.:

integer function p_solton (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information. Normal defaults are shown; optional items are in
[ ].:

/SOLUTION
> BASE_SOLUTION ]
> DEBUG,TX=OFF,BUS=OFF,AI=OFF,DCMODEL=OFF [ON]
> LTC = ON [OFF, ON_NV, ON_NPS, ON_DCONLY]
> AI_CONTROL = CONtrol [MON, OFF]
> MISC_CNTRL, -

X_BUS = BPA,- [WSCC]
PHASE_SHIFTER_BIAS = BPA,- [WSCC]
DCLP = ON, - [OFF]
VFLATSTART = ON, - [OFF]
ITER_SUM = OFF, - [ON]
TSTART = 0.5, -
NUMVSTEPS = 3

> SOL_ITER, DECOUPLED = 2, NEWTON = 30
> LIMITS,QRES=0.01,PHA=45.0,DEL_ANG=1.0,DEL_VOLT=0.15
> TOLERANCE, BUSV = 0.005, AIPOWER = 0.001, TX = 0.001, Q = 0.005

GET_DATA

This command with its many different forms fetches data from the powerflow engine. It calls p_gtdata.f with the
following parameters.:

integer function p_gtdata (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains any of the following commands.:

180 Chapter 2. Contents



Interactive Power Flow

/GET_DATA, TYPE = A_DATA
/GET_DATA, TYPE = AREA_DATA
/GET_DATA, TYPE = AREA_LIST
/GET_DATA, TYPE = BSEKV_LIST
/GET_DATA, TYPE = BUS_EXISTS
/GET_DATA, TYPE = BUS_LIST
/GET_DATA, TYPE = BUS_VOLTAGES
/GET_DATA, TYPE = COMMENTS
/GET_DATA, TYPE = CONNECTION
/GET_DATA, TYPE = COUNT
/GET_DATA, TYPE = FILE_EXISTS
/GET_DATA, TYPE = I_DATA
/GET_DATA, TYPE = INITIALIZE_DEF
/GET_DATA, TYPE = INPUT
/GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION
/GET_DATA, TYPE = LOAD_AREA
/GET_DATA, TYPE = LOAD_DEFINE
/GET_DATA, TYPE = LOAD_REF_AREA
/GET_DATA, TYPE = LOAD_REF_BASE
/GET_DATA, TYPE = NETWORK_DATA
/GET_DATA, TYPE = OUTAGES
/GET_DATA, TYPE = OUTPUT
/GET_DATA, TYPE = OWNER_LIST
/GET_DATA, TYPE = RECORD_LIST
/GET_DATA, TYPE = REF_AREA_DATA
/GET_DATA, TYPE = REF_OUTPUT
/GET_DATA, TYPE = SOL_PAR
/GET_DATA, TYPE = STATUS
/GET_DATA, TYPE = SUB_DEFINE
/GET_DATA, TYPE = SYSTEM
/GET_DATA, TYPE = ZONE_LIST

The routine p_gtdata.f parses these commands and calls a subroutine to perform the specific task, according to the
type of data indicated.

GET_DATA, TYPE = A_DATA

This command retrieves in out_buffer all type A input data records in WSCC format. It calls a_data.f with the
following parameters.:

integer function a_data (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = A_DATA

Note that no areas are specified in in_buffer; this command just gets a list of the areas in the case.:

.. _pcl-get-data-area-data:

2.7. Powerflow Command Language (PCL) 181



Interactive Power Flow

GET_DATA, TYPE = AREA_DATA

This command obtains the area interchange output data from the WSCC-formatted input area records. This command
should be preceded with a prior command GET_AREA, TYPE=LOAD_AREA. It calls p_gtbase.f with the following
parameters.:

integer function p_gtdata (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = AREA_DATA
A <areaname>

GET_DATA, TYPE = AREA_LIST

This command loads the area list filter window in the Network Data Edit Dialog and the Report Dialog of the GUI. It
returns in out_buffer the list of area names in the following format.:

<areaname> LINEFEED

where <areaname> is the area name in A10 format.

It calls area_list.f with the following parameters.:

integer function area_list (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains optional filter data in the following command.:

/GET_DATA, TYPE = AREA_LIST [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND
ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = '* ', 'A*', 'A?', 'I ', 'B*', 'L*', 'B?',

'B ', 'BE', 'BS', 'BC', 'BD', 'BV', 'BQ',
'BG', 'BT', 'BX', 'BM', 'BF', '+ ', 'X ',
'Q ', 'LD', 'LM', 'E ', 'T ', 'TP', 'R ',
'RZ'

ALL

Details of the filter are found in Dynamic Filters.

182 Chapter 2. Contents



Interactive Power Flow

GET_DATA, TYPE = BSEKV_LIST

This command loads the base kV filter window in the Network Data Edit Dialog and the Reports Dialog of the GUI. It
returns in out_buffer the list of filtered base kVs in the following format.:

<basekv> LINEFEED

where <basekv> is the base kV in F6.1 format.

It calls bsekvltt.f with the following parameters.:

integer function bsekvlst (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains optional filter data in the following command.:

/GET_DATA, TYPE = BSEKV_LIST [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND

ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = '* ', 'A*', 'A?', 'I ', 'B*', 'L*', 'B?',

'B ', 'BE', 'BS', 'BC', 'BD', 'BV', 'BQ',
'BG', 'BT', 'BX', 'BM', 'BF', '+ ', 'X ',
'Q ', 'LD', 'LM', 'E ', 'T ', 'TP', 'R ',
'RZ'

BUS = "<busname>" (quotes are necessary)
ALL
LOADING = (<min> <max>)

Details of the filter are found in Dynamic Filters.

GET_DATA, TYPE = BUS_EXISTS

This command inquires whether a given bus exists. It calls ex_bus.f with the following parameters.:

integer function ex_bus (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = BUS_EXISTS, BUS = bus_name base_kv

2.7. Powerflow Command Language (PCL) 183



Interactive Power Flow

bus_name is an eight character name (blank filled to eight characters) followed by a Fortran F4.0 or F6.1 base kV.

The return status is 0 if the bus exists in the current case or 1 if it does not exist.

GET_DATA, TYPE = BUS_LIST

This command loads the bus list dialog in the Alpha Search Dialog, the Network Data Edit Dialog, and the Reports
Dialog of the GUI. It returns in out_buffer the list of filtered bus names and base kVs in the following format.:

<busname><base kv> LINEFEED

where <busname> is the bus name in A8 format; <basekv> is the base kV in F6.1 format.

It calls bus_list.f with the following parameters.:

integer function bus_list (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains optional filter data in the following command.:

/GET_DATA, TYPE = BUS_LIST [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND
ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = '* ', 'A*', 'A?', 'I ', 'B*', 'L*', 'B?',

'B ', 'BE', 'BS', 'BC', 'BD', 'BV', 'BQ',
'BG', 'BT', 'BX', 'BM', 'BF', '+ ', 'X ',
'Q ', 'LD', 'LM', 'E ', 'T ', 'TP', 'R ',
'RZ'

BUS = "<busname>" (quotes are necessary)
AFTER_BUS = "<busname>"
ALL
LOADING = (<min> <max>)

Details of the filter are found in Dynamic Filters.

184 Chapter 2. Contents



Interactive Power Flow

GET_DATA, TYPE = BUS_VOLTAGES

This command returns in out_buffer the list of all bus voltages in the following format.:

<busname><base kv><voltage><angle> LINEFEED

where <busname> is the bus name in (A8),
<basekv> is the base kV in (F4.0),
<voltage> is the actual voltage magnitude in kV in (I4), and
<angle> is the angle in degrees in (I4).

It calls gtbsvolt.f with the following parameters.:

integer function gtbsvolt (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = BUS_VOLTAGES

GET_DATA, TYPE = COMMENTS

This command obtains case comments, along with case ID, project name, and headers.

There is a related command:

/PUT_DATA, TYPE = COMMENTS

which modifies the corresponding data except for header 1 which is not modifiable. Header 1 is formatted to include
case name, case description, program version, date, etc. Up to 20 comments are returned. The three header records are
always returned.

The returned values are encoded in the character array out_buffer in free field, C-formatted strings. The quantities
enclosed in angle brackets “< . . . >” denote variables returned. Headers may be up to 130 characters; comments may
be up to 120 characters, not including the H or C in column 1.:

/GET_DATA, TYPE = COMMENTS
CASE_ID = "< case name >" 10 chars
CASE_DS = "< case description >" 20 chars
H< header 1 information >
H< header 2 information >
H< header 3 information >
C< comment text >
...
C< comment text >
return status: status = 0 : success

1 : error

2.7. Powerflow Command Language (PCL) 185



Interactive Power Flow

GET_DATA, TYPE = CONNECTION

This command retrieves network connection information for given buses. Its main usage is to draw the display network
diagram. It calls gtconnect.f with the following parameters.:

integer function gtconnect (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = CONNECTION
B <busname, etc> returns all connection data associated with bus
B <busname, etc> returns all connection data associated with bus

The connection data is returned in out_buffer in the following format.:

B <busname><basekv> LINEFEED
L <busname><basekv> <busname><basekv> LINEFEED
T <busname><basekv> <busname><basekv> LINEFEED

Specifically,:

"B" records: (1:2) = "B "
(3:14) = <bus1><base1>.

"L" records: (1:2) = "L "
(3:14) = <bus1><basekv1>
(16:27) = <bus2><base2>.
(28:29) = <number of parallel circuits>

"T" records: (1:2) = "T "
(3:14) = <bus1><basekv1>
(16:27) = <bus2><base2>.
(28:29) = <number of parallel circuits>

GET_DATA, TYPE = COUNT

This command computes the number of network data records that would be retrieved using a subsequent /GET_DATA,
TYPE=NETWORK_DATA command using the same filter which is defined with this command. The output appears in a
dialog field in the Network Data Edit Dialog of the GUI. It returns the count in out_buffer in the following format.:

count = cccccc

cccccc is the count in I6 format. This command calls gtcount.f with the following parameters.:

integer function gtcount (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains filter data in the following command.:

186 Chapter 2. Contents



Interactive Power Flow

/GET_DATA, TYPE = COUNT [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND
ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = '* ', 'A*', 'A?', 'I ', 'B*', 'L*', 'B?',

'B ', 'BE', 'BS', 'BC', 'BD', 'BV', 'BQ',
'BG', 'BT', 'BX', 'BM', 'BF', '+ ', 'X ',
'Q ', 'LD', 'LM', 'E ', 'T ', 'TP', 'R ',
'RZ'

BUS = "<busname>" (quotes are necessary)
AFTER_BUS = "<busname>"
ALL
LOADING = (<min> <max>)

GET_DATA, TYPE = FILE_EXISTS

This command inquires whether a named file exists on the platform where ipvsrv is running. It calls ex_file.f with
the following parameters.:

integer function ex_file (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = FILE_EXISTS, FILE = <file_name>

The return status is 0 if the bus exists, or 1 if it does not exist.

GET_DATA, TYPE = I_DATA

This command retrieves in out_buffer all type I records in WSCC format. It calls i_data.f with the following
parameters.:

integer function i_data (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information:

/GET_DATA, TYPE = I_DATA

2.7. Powerflow Command Language (PCL) 187



Interactive Power Flow

GET_DATA, TYPE = INITIALIZE_DEF

This command initializes the user analysis arrays. It should be called prior to a USER_ANALYSIS command. It calls
p_initdef.f with the following parameters.:

integer function p_initdef (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = INITIALIZE_DEF

GET_DATA, TYPE = INPUT

This command retrieves the full network data given the identification of that record in WSCC format. If the record is
type B, all data relevant to that bus is retrieved. It calls gtinput.f with the following parameters.:

integer function gtinput (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains WSCC-formatted records following the command /GET_DATA.:

/GET_DATA, TYPE = INPUT
A <areaname>
I <area1 area2>
B <busname, etc> returns all data associated with bus
+ <busname, etc> returns all data if id fields have wild cards

(type - column 2, owner, columns 3-5, and code-year
columns 20-21)

X <busname, etc>
L <bus1 bus2, etc> returns all parallels if id is wild card (*)

returns all sections if section is 0
T <bus1 bus2, etc>
R <bus1 bus2, etc>
E <bus1 bus2, etc>

The character array in_buffer is passed through p_gtdata.f to gtinput.f.

GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION

This command computes transmission line impedance data given tower geometry and conductor characteristics. It calls
a stand-alone module p_lic.f and associated routines, which are completely separate from the powerflow data base.
(It was added to ipfsrv to keep the GUI free from any FORTRAN modules.):

integer function p_lic (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

188 Chapter 2. Contents



Interactive Power Flow

The character array in_buffer contains the following information:

/GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION
UNITS = < ENGLISH | METRIC >,
DISTANCE = < miles | km >
BASEKV = <basekv>,
BASEMVA = <basemva>,
FREQUENCY = <freq>

CONDUCTOR = 1 .3636 .05215 1.602 -20.75 50. 50. 0.0 0.0 0
CONDUCTOR = 1 .3636 .05215 1.602 -19.25 50. 50. 0.0 0.0 0
CONDUCTOR = 2 .3636 .05215 1.602 -0.75 77.5 77.5 0.0 0.0 0
CONDUCTOR = 2 .3636 .05215 1.602 0.75 77.5 77.5 0.0 0.0 0
CONDUCTOR = 3 .3636 .05215 1.602 19.25 50. 50. 0.0 0.0 0
CONDUCTOR = 3 .3636 .05215 1.602 20.75 50. 50. 0.0 0.0 0
CONDUCTOR = 0 .5 2.61 0.386 -12.9 98.5 98.5 0.0 0.0 0
CONDUCTOR = 0 .5 2.61 0.386 12.9 98.5 98.5 0.0 0.0 0

The returned line impedance data in character array out_buffer has the following format.:

LIC = <r> <x> <g/2> <b/2>

<r>, <x>, <g/2>, and <b/2> are the corresponding per unit line quantities encoded as F14.8 fields.

GET_DATA, TYPE = LOAD_AREA

This command initializes arrays associated with area interchange data. It should be called prior to any requests for area
output. It calls ldardata.f with the following parameters,:

integer function ldardata (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = LOAD_AREA

GET_DATA, TYPE = LOAD_DEFINE

This command loads the user analysis arrays. It calls p_loaddef.f with the following parameters.:

integer function p_loaddef (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = LOAD_DEFINE
> DEFINE ...
> DEFINE ...
> DEFINE ...

(continues on next page)

2.7. Powerflow Command Language (PCL) 189



Interactive Power Flow

(continued from previous page)

C ...
C ...
C ...

GET_DATA, TYPE = LOAD_REF_AREA

This command initializes arrays associated with area interchange data using the data from the reference base case. Prior
to this call, the reference base case should be loaded. It calls P_ldxardta.f with the following parameters.:

integer function p_ldxardta (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = LOAD_REF_AREA

GET_DATA, TYPE = LOAD_REF_BASE

This command loads a reference base case history file for the purpose of base case comparison or plot comparisons.
The requested base case must be in the IPF format. It calls p_gtdata.f with the following parameters.:

integer function p_gtdata (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information:

/GET_DATA, TYPE = LOAD_REF_BASE, FILE = <file_name>

GET_DATA, TYPE = NETWORK_DATA

This command gets filtered network data records. The output appears in the scrollable edit list on the Network Data
Edit Dialog in the GUI. This command calls gtnetdat.f with the following parameters.:

integer function gtnetdat (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains filter data in the following command.:

/GET_DATA, TYPE = NETWORK_DATA [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND

ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

(continues on next page)

190 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = '* ', 'A*', 'A?', 'I ', 'B*', 'L*', 'B?',

'B ', 'BE', 'BS', 'BC', 'BD', 'BV', 'BQ',
'BG', 'BT', 'BX', 'BM', 'BF', '+ ', 'X ',
'Q ', 'LD', 'LM', 'E ', 'T ', 'TP', 'R ',
'RZ'

BUS = "<busname>" (quotes are necessary)
AFTER_BUS = "<busname>"
ALL
LOADING = (<min> <max>)

Details of the filter are found in Dynamic Filters.

GET_DATA, TYPE = OUTAGES

This command retrieves the list of outaged data for the Report Dialog (under Bone Pile). It calls gtoutage.f with the
following parameters.:

integer function gtoutage (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = OUTAGES

The returned outage data returned in character array out_buffer is WSCC-formatted network data that has been deleted.

GET_DATA, TYPE = OUTPUT

This command can access virtually the entire network data base. It calls gtoutput.f with the following parameters.:

integer function gtoutput (in_buffer, out_buffer)
parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER)
character out_buffer * (MAXBUFFER)

The character array in_buffer contains the following information.:

/GET_DATA, TYPE = OUTPUT
A <areaname> returns all data associated with area
I <area1 area2> returns all intertie data between the areas
B <busname, etc> returns all data associated with bus
+ <busname, etc> returns all data if id fields have wild cards

(continues on next page)

2.7. Powerflow Command Language (PCL) 191



Interactive Power Flow

(continued from previous page)

(type - column 2, owner, columns 3-5, and code-year
columns 20-21)

X <busname, etc>
L <bus1 bus2, etc> returns all parallels if id is wild card (*)

returns all sections if section is wild card (0)
T <bus1 bus2, etc>
R <bus1 bus2, etc>
E <bus1 bus2, etc>

The returned values in out_buffer correspond with the input record in in_buffer.

Table 2.7.2: Area A Record
Column Format Description
1 A1 A — Area Identifier
2 1X Blank
3-12 A10 Area name
13 1X Blank
14-28 E15.7 Total Area Generation (MW)
29-43 E15.7 Total Area Load (MW)
44-58 E15.7 Total Area Losses (MW)
59-73 E15.7 Net Area Export (MW)

Table 2.7.3: AC Buses (Types B, BE, BS, BC, BD, BV, BQ, BG, BT, BX)
Column Format Description
1 A1 Bus code “B”
2 A1 Bus type (” “, “E”, “S”, “D”, etc.)
3 1X (Not used)
4-6 A3 Ownership
7-14 A8 Bus name
15-18 F4.0 Bus base KV
19-20 A2 Zone
21-35 E15.7 P_gen (MW)
36-50 E15.7 Q_gen (MVAR)
51-65 E15.7 Voltage (KV)
66-80 E15.7 Angle (degrees)
81-95 E15.7 P_load (MW)
96-110 E15.7 Q_load (MVAR)
111-125 E15.7 B_shunt used (MVAR)
126-140 E15.7 B_shunt scheduled (MVAR)
141-155 E15.7 B_shunt (capacitors) used (MVAR)
156-170 E15.7 B_shunt (capacitors) scheduled (MVAR)
171-185 E15.7 B_shunt (reactors) used (MVAR)
186-200 E15.7 B_shunt (reactors) scheduled (MVAR)
201-215 E15.7 Q unscheduled (MVAR)

192 Chapter 2. Contents



Interactive Power Flow

Table 2.7.4: DC Buses (Type BD and BM)
Column Format Description
1 A1 Bus code “B”
2 A1 Bus type (“D” or “M”)
3 1X (Not used)
4-6 A3 Ownership
7-14 A8 Bus name
15-18 F4.0 Bus base KV
19-20 A2 Zone
21-35 E15.7 P_d-c (MW)
36-50 E15.7 Q_d-c (MVAR)
51-65 E15.7 D_C Voltage (KV)
66-80 E15.7 Converter angle (degrees)
81-95 E15.7 P_valve losses (MW)
96-110 E15.7 Q_valve losses (MVAR)

2-6 5X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0 Bus base KV 19-20 2X (not used) 21 I1 Group
No. 1 scheduled units 22 I1 Group No. 1 used units 23-37 E15.7 Group No. 1 reactance (MVAR) / unit 38 I1 Group
No. 2 scheduled units 39 I1 Group No. 2 used units 40-54 E15.7 Group No. 2 reactance (MVAR) / unit 55 I1 Group
No. 3 scheduled units 56 I1 Group No. 3 used units 57-71 E15.7 Group No.3 reactance (MVAR) / unit 72 I1 Group No.
4 scheduled units 73 I1 Group No. 4 used units 74-88 E15.7 Group No. 4 reactance (MVAR) / unit 89 I1 Group No. 5
scheduled units 90 I1 Group No.5 used units 91-105 E15.7 Group No. 5 reactance (MVAR) / unit 106 I1 Group No.
6 scheduled units 107 I1 Group No. 6 used units 108-122 E15.7 Group No. 6 reactance (MVAR) / unit 123 I1 Group
No. 7 scheduled units 124 I1 Group No. 7 scheduled units 125-139 E15.7 Group No. 7 reactance (MVAR) / unit 140
I1 Group No. 8 scheduled units 141 I1 Group No. 8 used units 142-156 E15.7 Group No. 8 reactance (MVAR) / unit

2 A1 Continuation bus subtype (A,C,F,I,N,P,S) 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0 Bus
base KV 19-20 A2 Classification code year, * I — constant current loads, * Z — constant impedance loads, * P —
constant MVA loads, 21-35 E15.7 P_gen (MW) 36-50 E15.7 Q_gen (MVAR) 51-65 E15.7 P_load (MW) 66-80 E15.7
Q_load(MVAR) 81-95 E15.7 G_shunt (MW) 96-110 E15.7 B_shunt (MVAR)

2 A1 Line subtype (LD, LM, or TP) 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus1 name 15-18 F4.0 Bus1 base
KV 19 I1 Interchange metering point (0, 1, or 2) 20-27 A8 Bus 2 name 28-31 F4.0 Bus 2 base KV 32 A1 Parallel
ID ( * (asterisk) means all parallels) 33 I1 Number of circuits 34-48 E15.7 P_in (MW) 49-63 E15.7 Q_in (MVAR)
64-78 E15.7 P_out (MW) 79-93 E15.7 Q_out (MVAR) 94-108 E15.7 P_loss (MW) 109-123 E15.7 Q_loss (MW)
124-138 E15.7 Critical line loading (amps) 139-146 F8.1 Critical line rating (amps) 147 A1 Critical line rating code
(N,T,B) 148 I1 Critical line loading terminal (0,1,2) 149-163 E15.7 Critical transformer loading (MVA) 164-171 F8.1
Critical transformer rating (MVA) 172 A1 Critical transformer rating code (N,T,E,B) 173 I1 Critical transformer loading
terminal (0,1,2) 174-188 E15.7 Total Line loading (percent) 189-203 E15.7 Total Line loading (amps) 204-218 E15.7
Total Transformer loading (percent) 219-233 E15.7 Total Transformer loading (MVA) 234-241 F8.2 Tap1 in kV (Type
T or TP) or %Compensation (L or E.) 242-249 F8.2 Tap2 in kV 250-256 A7 (Reserved for difference plotting)

2.7. Powerflow Command Language (PCL) 193



Interactive Power Flow

GET_DATA, TYPE = OWNER_LIST

This command loads the ownership list dialog in the Reports Dialog and in the Network Data Edit Dialog of the
GUI. It returns in out_buffer the list of filtered ownership names in the following format. <ownership>LINEFEED
<ownership> is the ownership name in A3 format. It calls owner_list.f with the following parameters. integer function
owner_list (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character
out_buffer * (MAXBUFFER) The character array in_buffer contains optional filter data in the following command.
/GET_DATA, TYPE = OWNER_LIST [ FROM BUS_DATA ]

WHERE AREAS = <area1>, <area2>, etc AND ZONES = <zone1>, <zone2>, etc AND OWNERS =
<own1>, <own2>, etc AND BASEKV = base1 < base ( example < 115.0 means all base kv’s less than or
equal to 115.0) > base ( example > 115.0 means all base kv’s greater than or equal to 115.0) base1 < base2
(all bases between base1 and base 2) base2 > base1 (same as above) TYPE = ’* ’, ’A*’, ’A?’, ’I ’, ’B*’,
’L*’, ’B?’,

’B ’, ’BE’, ’BS’, ’BC’, ’BD’, ’BV’, ’BQ’,
’BG’, ’BT’, ’BX’, ’BM’, ’BF’, ’+ ’, ’X ’, ’Q ’, ’LD’, ’LM’, ’E ’, ’T ’, ’TP’, ’R ’, ’RZ’ BUS = “<busname>” (quotes
are necessary) AFTER_BUS = “<busname>” ALL LOADING = (<min> <max>)

Details of the filter are found in Dynamic Filters.

GET_DATA, TYPE = RECORD_LIST

This command loads the record type list dialog in the Reports Dialog and in the Network Data Edit Dialo-
gof the GUI. It returns in out_buffer the hard-coded list of various record type codes in the following format.
<record_type>LINEFEED <record_type> is the record type code in A2 format. This command calls type_list.f with the
following parameters. integer function type_list (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character
in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) The character array in_buffer contains optional
filter data in the following command. /GET_DATA, TYPE = RECORD_LIST [ FROM BUS_DATA ]

WHERE AREAS = <area1>, <area2>, etc AND ZONES = <zone1>, <zone2>, etc AND OWNERS =
<own1>, <own2>, etc AND BASEKV = base1 < base ( example < 115.0 means all base kv’s less than or
equal to 115.0) > base ( example > 115.0 means all base kv’s greater than or equal to 115.0) base1 < base2
(all bases between base1 and base 2) base2 > base1 (same as above) TYPE = ’* ’, ’A*’, ’A?’, ’I ’, ’B*’,
’L*’, ’B?’,

’B ’, ’BE’, ’BS’, ’BC’, ’BD’, ’BV’, ’BQ’,
’BG’, ’BT’, ’BX’, ’BM’, ’BF’, ’+ ’, ’X ’, ’Q ’, ’LD’, ’LM’, ’E ’, ’T ’, ’TP’, ’R ’, ’RZ’ BUS = “<busname>” (quotes
are necessary) AFTER_BUS = “<busname>” ALL LOADING = (<min> <max>)

In this instance only, the filter has no impact upon the contents of the returned data. Details of the filter are found in
the IPF Basic User’s Guide under the section on “Dynamic Filters.” GET_DATA, TYPE = REF_AREA_DATA This
command obtains the area interchange output data from the WSCC-formatted input area records using the reference
base case data. This command should be preceded with a prior command GET_AREA, TYPE=LOAD_REF_AREA.
It calls p_gtxardta.f with the following parameters. integer function p_gtxardta (in_buffer, out_buffer) parameter
(MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) The character
array in_buffer contains the following information. /GET_DATA, TYPE = AREA_REF_DATA A <areaname>

GET_DATA, TYPE = REF_OUTPUT This command can access virtually the entire network data from the refer-
ence base. It calls gtaltopt.f with the following parameters. integer function gtaltopt (in_buffer, out_buffer) parameter
(MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) The character
array in_buffer contains the following information. /GET_DATA, TYPE = OUTPUT A <areaname> returns all data
associated with area I <area1 area2> returns all interties between the two areas B <busname, etc> returns all data
associated with bus + <busname, etc> returns all data if id fields have wild cards

(type - column 2, owner, columns 3-5, and code-year columns 20-21)

X <busname, etc> L <bus1 bus2, etc> returns all parallels if id is wild card (*)

194 Chapter 2. Contents



Interactive Power Flow

returns all sections if section is wild card (0)

T <bus1 bus2, etc> R <bus1 bus2, etc> E <bus1 bus2, etc> The returned values in out_buffer correspond with the input
record in in_buffer.

2 1X Blank 3-12 A10 Area name 13 1X Blank 14-28 E15.7 Total Area Generation (MW) 29-43 E15.7 Total Area Load
(MW) 44-58 E15.7 Total Area Losses (MW) 59-73 E15.7 Net Area Export (MW)

2 1X Blank 3-12 A10 Area 1 name 13 1X Blank 14-23 A10 Area 2 name 24 1X Blank 25-39 E15.7 Scheduled Area1-
Area2 Export (MW) 40-54 E15.7 Actual Area1-Area2 Export (MW) 55-69 E15.7 “Circulating” Flow (MW) 70 1X
Blank 71 I1 0 — No Area1-Area2 I record exists 1 — Area1-Area2 I record exists

2 A1 Bus type 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0 Bus base KV 19-20 A2 Zone 21-35
E15.7 P_gen (MW) 36-50 E15.7 Q_gen (MVAR) 51-65 E15.7 Voltage (KV)) 66-80 E15.7 Angle (degrees) 81-95 E15.7
P_load (MW) 96-110 E15.7 Q_load (MVAR) 111-125 E15.7 B_shunt used (MVAR) 126-140 E15.7 B_shunt scheduled
(MVAR) 141-155 E15.7 B_shunt (capacitors) used (MVAR) 156-170 E15.7 B_shunt (capacitors) scheduled (MVAR)
171-185 E15.7 B_shunt (reactors) used (MVAR) 186-200 E15.7 B_shunt (reactors) scheduled (MVAR) 201-215 E15.7
Q unscheduled (MVAR)

2 A1 Bus type (“D” or “M)” 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0 Bus base KV 19-20 A2
Zone 21-35 E15.7 P_d-c (MW) 36-50 E15.7 Q_d-c (MVAR) 51-65 E15.7 D_C Voltage (KV) 66-80 E15.7 Converter
angle (degrees) 81-95 E15.7 P_valve losses (MW) 96-110 E15.7 Q_valve losses (MVAR)

2-6 5X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0 Bus base kV 19-20 2X (not used) 21 I1 Group No.
1 scheduled units 22 I1 Group No. 1 used units 23-37 E15.7 Group No. 1 reactance (MVAR) / unit 38 I1 Group No.
2 scheduled units 39 I1 Group No. 2 used units 40-54 E15.7 Group No. 2 reactance (MVAR) / unit 55 I1 Group No.
3 scheduled units 56 I1 Group No. 3 used units 57-71 E15.7 Group No.3 reactance (MVAR) / unit 72 I1 Group No. 4
scheduled units 73 I1 Group No. 4 used units 74-88 E15.7 Group No. 4 reactance (MVAR) / unit 89 I1 Group No. 5
scheduled units 90 I1 Group No.5 used units 91-105 E15.7 Group No. 5 reactance (MVAR) / unit 106 I1 Group No.
6 scheduled units 107 I1 Group No. 6 used units 108-122 E15.7 Group No. 6 reactance (MVAR) / unit 123 I1 Group
No. 7 scheduled units 124 I1 Group No. 7 scheduled units 125-139 E15.7 Group No. 7 reactance (MVAR) / unit 91 I1
Group No. 8 scheduled units 92 I1 Group No. 8 used units 93-100 E15.7 Group No. 8 reactance (MVAR) / unit

2 A1 Continuation bus subtype (A,C,F,I,N,P,S) 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus name 15-18 F4.0
Bus base KV 19-20 A2 Classification code year, *I — constant current loads, *Z — constant impedance loads, *P —
constant MVA loads, 21-35 E15.7 P_gen (MW) 36-50 E15.7 Q_gen (MVAR) 51-65 E15.7 P_load (MW) 66-80 E15.7
Q_load(MVAR) 81-95 E15.7 G_shunt (MW) 96-110 E15.7 B_shunt (MVAR)

2 A1 Line subtype (LD, LM, or TP) 3 1X (Not used) 4-6 A3 Ownership 7-14 A8 Bus1 name 15-18 F4.0 Bus1 base
KV 19 I1 Interchange metering point (0, 1, or 2) 20-27 A8 Bus 2 name 28-31 F4.0 Bus 2 base KV 32 A1 Parallel
ID ( * (asterisk) means all parallels) 33 I1 Number of circuits 34-48 E15.7 P_in (MW) 49-63 E15.7 Q_in (MVAR)
64-78 E15.7 P_out (MW) 79-93 E15.7 Q_out (MVAR) 94-108 E15.7 P_loss (MW) 109-123 E15.7 Q_loss (MW)
124-138 E15.7 Critical line loading (amps) 139-146 F8.1 Critical line rating (amps) 147 A1 Critical line rating code
(N,T,B) 148 I1 Critical line loading terminal (0,1,2) 149-163 E15.7 Critical transformer loading (MVA) 164-171 F8.1
Critical transformer rating (MVA) 172 A1 Critical transformer rating code (N,T,E,B) 173 I1 Critical transformer loading
terminal (0,1,2) 174-188 E15.7 Total Line loading (percent) 189-203 E15.7 Total Line loading (amps) 204-218 E15.7
Total Transformer loading (percent) 219-233 E15.7 Total Transformer loading (MVA) 234-241 F8.2 Tap1 in kV (Type
T or TP) or %Compensation (L or E.) 242-249 F8.2 Tap2 in kV 250-256 A7 (Reserved for difference plotting)

2.7. Powerflow Command Language (PCL) 195



Interactive Power Flow

GET_DATA, TYPE = SOL_PAR This command obtains solution tolerances, controls, or switches that influence the
processing of the case in residence. The obtained system data is identical to the set of data modified by the related com-
mand /SOLUTION. The returned values are encoded in the character array in_buffer in free field, C-formatted strings.
The quantities enclosed in angle brackets “< . . . >” denote variables quantitied; < status > denotes a logical on or off; <
value > denotes an integer, floating point, or character quantity. /GET_DATA, TYPE = SOL_PAR, > AI_CONTROL
= < value > { CON | MOD | OFF } > BASE_SOLUTION = < status > > DEBUG_TX = < status > > DEBUG_BUS =
< status > > DEBUG_AI = < status > > DEBUG_DC = < status > > LIMITS_QRES = < value > > LIMITS_PHA = <
value > > LIMITS_DA = < value > > LIMITS_DV = < value > > LTC = < value> { ON | ON_NV | ON_NPS | OFF |
ON_DCONLY } > MISC_XBUS = < value > { BPA | VMAX | WSCC } > MISC_DCLP = < status > > MISC_VFLAT
= < status > > MISC_TSTART = < value > > MISC_ITER_SUM = < status > > MISC_PHA_SHIFT_BIAS = < value >
{ BPA | WSCC } > SOL_ITER_DECOUP = < value > > SOL_ITER_NEWTON = < value > > TOL_BUSV = < value >
> TOL_AIPOWER = < value > > TOL_TX = < value > > TOL_Q = < value > return status: status = 0 : success 1 : errors
GET_DATA, TYPE = SUB_DEFINE This command performs character string substitution using computed base case
quantities upon the tokens defined with the >DEFINE statement within comment records in the USER_ANALYSIS
command. It calls p_subdef.f with the following parameters. integer function p_subdef (in_buffer, out_buffer) pa-
rameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) The
character array in_buffer contains the following information. /GET_DATA, TYPE = SUB_DEFINE, SOURCE = BASE

ALTERNATE_BASE

GET_DATA, TYPE = STATUS This command retrieves the case description. It calls gtstatus.f with the fol-
lowing parameters. integer function gtstatus out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) The character array in_buffer contains the following informa-
tion. /GET_DATA, TYPE = STATUS The character array out_buffer contains the following information. c c Program:
<n> version <n> date <n> c Program size: max buses <n> max branches c Case: <name> status <n> base file <n> c
<n> buses <n> branches <n> areas <n> d-c lines c <n> changes c c comments c c comments c c comments c

GET_DATA, TYPE = SYSTEM This command obtains system-specific information pertaining to parameters which
describe general characteristics of the base case in residence. The returned values are encoded in the character array
out_buffer in free field, C-formatted strings. The quantities enclosed in angle brackets “< . . . >” denote variables
returned; < status > denotes a logical on or off and < value > denotes an integer or floating point quantity. /GET_DATA,
TYPE = SYSTEM, CASE_DT = < case date > OLD_BASE = < file name > NEW_BASE = < file name > OLD_NETD
= < file name > NEW_NETD = < file name > OLD_CHGF = < file name > NEW_CHGF = < file name > PRG_VERS
= < program version > BASE_MVA = < base MVA > NUM_DC_SYS = < number of DC systems > NUM_AREA = <
number of areas> NUM_ITIE = < number of interties> NUM_ZONE = < number of zones> NUM_OWN = < number
of owners> NUM_BUS = < number of buses > NUM_AREA_SBUS = < number of area slack buses> NUM_DC_BUS
= < number of DC buses > NUM_AGC_BUS = < number of AGC buses> NUM_BX_BUS = < number of BX buses>
NUM_ADJ_BUS = < number of adjustable buses > NUM_PCT_VAR_BUS = < number of % VAR controlled buses >
NUM_BRN = < number of branch records> NUM_CKT = < number of circuits > NUM_DC_LINE = < number of DC
lines > NUM_LTC = < number of LTC transformers > NUM_PHAS = < number of phase shifters > SOLN_STATUS
= < solution status > NUM_KV = < number of different KVs > NUM_REC_TYP = < number of record types > return
status: status = 0 : success 1 : errors GET_DATA, TYPE = ZONE_LIST This command loads the zone list dialog in
the Reports Dialog and the Network Data Edit Dialog. See the IPF Basic User’s Guide. It returns in out_buffer the list
of filtered zones in the following format. <zone>LINEFEED

<zone> is the zone name in A2 format. It calls zone_list.f with the following parameters. integer function zone_list
(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer
* (MAXBUFFER) The character array in_buffer contains optional filter data in the following command. /GET_DATA,
TYPE = ZONE_LIST [ FROM BUS_DATA ]

WHERE AREAS = <area1>, <area2>, etc AND ZONES = <zone1>, <zone2>, etc AND OWNERS =
<own1>, <own2>, etc AND BASEKV = base1 < base ( example < 115.0 means all base kv’s less than or
equal to 115.0) > base ( example > 115.0 means all base kv’s greater than or equal to 115.0) base1 < base2
(all bases between base1 and base 2) base2 > base1 (same as above) TYPE = ’* ’, ’A*’, ’A?’, ’I ’, ’B*’,
’L*’, ’B?’,

196 Chapter 2. Contents



Interactive Power Flow

’B ’, ’BE’, ’BS’, ’BC’, ’BD’, ’BV’, ’BQ’,
’BG’, ’BT’, ’BX’, ’BM’, ’BF’, ’+ ’, ’X ’, ’Q ’, ’LD’, ’LM’, ’E ’, ’T ’, ’TP’, ’R ’, ’RZ’ BUS = “<busname>” (quotes
are necessary) AFTER_BUS = “<busname>” ALL LOADING = (<min> <max>)

Details of the filter are found in the IPF Basic User’s Guide under the section on “Dynamic Filters.”

2.7.5 PUT_DATA

PUT_DATA, TYPE = COMMENTS This command replaces case comments, along with caseid, case description, and
headers. There is a related command

/GET_DATA, TYPE = COMMENTS

which obtains the corresponding data including header 1 which is not modifiable. Header 1 is formatted to include
case name, case description, program version, date, etc. Up to 20 comments are allowed. The two header records must
be present even if blank. For all blank “H” or “C” records (blank “C” records are accepted, but optional) include at
least one blank character after the “H” or “C”. The sent values are encoded in the character array out_buffer in free
field, C-formatted strings. The quantities enclosed in angle brackets “< . . . >” denote variables. Headers may be up
to 130 characters; comments may be up to 120 characters, not including the “H” or “C” in column 1. /PUT_DATA,
TYPE = COMMENTS CASE_ID = “< case name >” 10 chars CASE_DS = “< case description >” 20 chars H< header
2 information > H< header 3 information > C< comment text > . . . C< comment text >

2.7.6 Report Generation

The /REPORTS command with its many different forms fetches data from the Powerflow process for display
in the Reports Dialog. It calls p_report.f with the following parameters. integer function p_report (in_buffer,
out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer *
(MAXBUFFER) The character array in_buffer contains any of the following commands. /REPORTS, SELECT
AI_SUMMARY /REPORTS, SELECT BUS_INPUT /REPORTS, SELECT BUS_BR_INPUT /REPORTS, SELECT
BUS_BR_OUTPUT /REPORTS, SELECT BUS_UVOV /REPORTS, SELECT LINE_COMPARISON /REPORTS,
SELECT NETWORK_CHANGES /REPORTS, SELECT NETWORK_DELETIONS /REPORTS, SELECT OVER-
LOADED_LINES /REPORTS, SELECT OVERLOADED_TXS /REPORTS, SELECT PHASE_SHIFTER /RE-
PORTS, SELECT TIE_LINE_SUMMARY /REPORTS, SELECT VOLTAGE_COMPARISON The routine p_report.f
parses these command and calls a subroutine to perform the specific task. The modules are listed below.

REPORTS, SELECT AI_SUMMARY

This command retrieves filtered area interchange output data. It calls areaintrpt.f with the following parame-
ters. integer function areaintrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the
string AI_SUMMARY. The character array in_buffer contains the following information. /REPORTS, SELECT
AI_SUMMARY

[ OUTPUT = <filename> ]

The output is placed in out_buffer. The report dialog is shown below.

2.7. Powerflow Command Language (PCL) 197



Interactive Power Flow

Fig. 2.7.1: Area Interchange Summary Report Dialog

REPORTS, SELECT BUS_INPUT

This command retrieves filtered WSCC-formatted bus input data records. It calls businrpt.f with the following pa-
rameters. integer function businrpt(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer
* (MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following
the string BUS_INPUT. The character array in_buffer contains the following information. /REPORTS, SELECT
BUS_INPUT [ FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer. The report dialog is shown below.

Fig. 2.7.2: Bus Input Data Report Dialog

198 Chapter 2. Contents



Interactive Power Flow

REPORTS, SELECT BUS_BR_INPUT

This command retrieves filtered WSCC-formatted bus and branch input data records. It calls busbrinrpt.f with the
following parameters. integer function busbrinrpt(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) charac-
ter in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character
following the string BUS_BR_INPUT. The character array in_buffer contains the following information. /REPORTS,
SELECT BUS_BR_INPUT [ FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer. The report dialog is shown below.

Fig. 2.7.3: Bus Branch Input Report Dialog

REPORTS, SELECT BUS_BR_OUTPUT

This command retrieves filtered bus and branch output records. It calls busbrotrpt.f with the following param-
eters. integer function busbrotrpt(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the
string BUS_BR_OUTPUT. The character array in_buffer contains the following information. /REPORTS, SELECT
BUS_BR_OUTPUT [ FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.The report dialog is shown below.

2.7. Powerflow Command Language (PCL) 199



Interactive Power Flow

Fig. 2.7.4: Bus Branch Output Report Dialog

REPORTS, SELECT BUS_UVOV

This command retrieves filtered under/over voltage bus output data. It calls busuvovrpt.f with the following param-
eters. integer function busuvovrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer positioned to the first character following the string
BUS_UVOV. The character array in_buffer contains the following information. /REPORTS, SELECT BUS_UVOV [
FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.The report dialog is shown below.

img/Overvoltage_Undervoltage_Report_Dialog.png.png

Fig. 2.7.5: Overvoltage Undervoltage Report Dialog

REPORTS, SELECT LINE_COMPARISON

This command retrieves filtered line loading differences between the base case in residence and a selected base case
history data file. It calls lfodifrpt.f with the following parameters. (Not currently working.) integer function lfodifrpt
(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer *
(MAXBUFFER) in_buffer is positioned to the first character following the string LINE_COMPARISON. The character
array in_buffer contains the following information. /REPORTS, SELECT LINE_COMPARISON

[ OUTPUT = <filename> ] FILE = <filename> WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.

200 Chapter 2. Contents



Interactive Power Flow

REPORTS, SELECT NETWORK_CHANGES

This command retrieves the list of all accumulated changes performed on the base case in residence. It calls chglisrpt.f
with the following parameters. integer function chglilsrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600)
character in_buffer * (MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first char-
acter following the string NETWORK_CHANGES. The character array in_buffer contains the following information.
/REPORTS, SELECT NETWORK_CHANGES

[ OUTPUT = <filename> ]

The output is placed in out_buffer.The report dialog is shown below.

Fig. 2.7.6: Network Changes Remote Dialog

REPORTS, SELECT NETWORK_DELETIONS

This command retrieves the list of all deleted network data in WSCC format. It calls deleterpt.f with the following
parameters. integer function deleterpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer
* (MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the
string NETWORK_DELETIONS. The character array in_buffer contains the following information. /REPORTS, SE-
LECT NETWORK_DELETIONS

[ OUTPUT = <filename> ]

The output is placed in out_buffer.The report dialog is shown below. (This is the report accessed under Bone Pile.)

2.7. Powerflow Command Language (PCL) 201



Interactive Power Flow

Fig. 2.7.7: Bonepile Output Report Dialog

REPORTS, SELECT OVERLOADED_LINES

This command retrieves filtered overloaded branch output data. It calls ovldlnsrpt.f with the following parame-
ters. integer function ovldlnsrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer positioned to the first character following the string
OVERLOADED_LINES. The character array in_buffer contains the following information. /REPORTS, SELECT
OVERLOADED_LINES [ FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.The report dialog is shown below.

REPORTS, SELECT OVERLOADED_TXS

This command retrieves filtered overloaded transformer output data. It calls ovldtxsrpt.f with the following param-
eters. integer function ovldtxsrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer *
(MAXBUFFER) character out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the
string OVERLOADED_TXS. The character array in_buffer contains the following information. /REPORTS, SELECT
OVERLOADED_TXS [ FROM BUS_DATA ]

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.The report dialog is shown below

REPORTS, SELECT PHASE_SHIFTER

This command retrieves the phase shifter report. It calls phshftrpt.f with the following parameters. integer function
phshftrpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character
out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the string PHASE_SHIFTER The
character array in_buffer contains the following information. /REPORTS, SELECT PHASE_SHIFTER

[ OUTPUT = <filename> ]

The output is placed in out_buffer.The report dialog is shown below.

202 Chapter 2. Contents



Interactive Power Flow

Fig. 2.7.8: Overvoltage Lines Report Dialog

2.7. Powerflow Command Language (PCL) 203



Interactive Power Flow

Fig. 2.7.9: Overloaded Transformers Report Dialog

Fig. 2.7.10: Phase Shifter Report Dialog

204 Chapter 2. Contents



Interactive Power Flow

REPORTS, SELECT TIE_LINE_SUMMARY

This command retrieves filtered area tie line flows. It calls inttierpt.f with the following parameters. integer function
inttierpt (in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character
out_buffer * (MAXBUFFER) in_buffer is positioned to the first character following the string TIE_LINE_SUMMARY.
The character array in_buffer contains the following information. /REPORTS, SELECT TIE_LINE_SUMMARY

[ OUTPUT = <filename> ] WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.The report dialog is shown below.

Fig. 2.7.11: Tie Line Summary Report Dialog

REPORTS, SELECT VOLTAGE_COMPARISON

This command retrieves filtered voltage differences between the base case in residence and a selected base case his-
tory data file. It calls vltdifrpt.f with the following parameters. (Not currently working.) integer function vltdifrpt
(in_buffer, out_buffer) parameter (MAXBUFFER = 6600) character in_buffer * (MAXBUFFER) character out_buffer
* (MAXBUFFER) in_buffer is positioned to the first character following the string VOLTAGE_COMPARISON. The
character array in_buffer contains the following information. /REPORTS, SELECT VOLTAGE_COMPARISON

[ OUTPUT = <filename> ] FILE = <filename> WHERE (repeat filter from BUS_LIST)

The output is placed in out_buffer.

2.8 Command Line Tools

2.8.1 bpf

Command line interface that performs power flow. It executes using commands from a Power Flow Control (PFC)
file. Example usage: bpf bench.pfc. The PFC commands (.pfc) used with bpf allow for complete power flow runs
including defining the network model and commands to perform various operations such as evaluating outages. The
Record Formats section describes the network model records available and the Power Flow Control (PFC) section
describes the PFC syntax and commands available.

In order to process a case, bpf requires a program control file and a valid set of base case data, which may be a
composite of NETWORK_DATA and BRANCH_DATA formatted ASCII files or an OLD_BASE file from a previous run of
bpf, and a CHANGE file.

The PFC file either contains data used for the solution, or names files containing such data. The solution data is
optionally saved on the file named in the NEW_BASE command.

2.8. Command Line Tools 205



Interactive Power Flow

Types of Processing

Input files used vary with the type of IPF processing, so it is important that you have a good understanding of the
purpose of each type of file. Different program functions use the files to perform specific processes. Some major
processes are:

• Basic Processing (POWER FLOW)

• Merge Base /MERGE_BASE

• Network Reduction /REDUCTION

• Outage Simulation /OUTAGE_SIM

Sample PFC file setups for each of the following solution processes are given in ??.

Creating a New Base Case

The figure below depicts the initial way an IPF case is processed and how the output is saved on a NEW_BASE file,
which may then become an OLD_BASE file for subsequent change studies. The contents of the print file (PFO) are
defined by the P_INPUT, P_OUTPUT, and P_ANALYSIS commands. Likewise, the contents of the fiche file (PFF) are
defined by the F_INPUT, F_OUTPUT, and F_ANALYSIS commands.

Fig. 2.8.1: New Base Creation Process

Changing an Old Base Case

The figure below shows the most commonly used bpf process. A change case is created from an OLD_BASE file using
a CHANGE file. The modified case data is saved on the NEW_BASE file. The output files PFO and PFF can be printed to
paper or fiche or both.

206 Chapter 2. Contents



Interactive Power Flow

Fig. 2.8.2: Old Base Case With Changes

Merging Subsystems

The figure below shows a NEW_BASE file being created by merging a subsystem from a case on an OLD_BASE file with
another subsystem from either a second OLD_BASE or from a BRANCH_DATA and a NETWORK_DATA file. The output files
PFO and PFF can be printed to paper and/or fiche.

Reducing a Network

In the figure below, a network reduction is specified in the PFC file. Commands within this file define the retained
system. The actual network reduction dynamically changes the base data in memory, and the reduced base case is
saved on the NEW_BASE file. These output files (.PFO and .PFF) can be printed to paper and/or fiche.

For static reduction, you can use the ipfcut program. It is described in ??.

Simulating Outages

The figure below shows an outage simulation being processed directly from an OLD_BASE file. Only printed analysis
is output; no data files are generated. This printed output can be directed to either fiche or paper. Simulating outages
is a special power flow function that subjects a subsystem of interest to a series of single contingency branch outages
and tabulates the consequences of each outage or the cause of each overload.

2.8.2 ipf_reports

ipf_reports is a command line tool that can be used to get information on an existing base case (.bse) file.

2.8. Command Line Tools 207



Interactive Power Flow

Fig. 2.8.3: Merging Two or More Subsystems

Fig. 2.8.4: Reducing a Network

208 Chapter 2. Contents



Interactive Power Flow

Fig. 2.8.5: An Outage Simulation

2.8.3 ipfplot

ipfplot is a batch plotting program to produce printed maps. The program accepts a coordinate file (.cor) and a base
case file (.bse) on the command line, as well as an optional second base case file. When the second base case file is
specified, a difference plot is produced. You can also use IPFPLOT to produce bubble diagrams. The same coordinate
files are used for both GUI and IPFPLOT, but not all capabilities are available in the GUI.

2.8.4 netdat

netdat is a command line program that converts a binary base file (.bse) created by bpf to an ASCII network data
file. It provides similar function to ipfnet, but ipfnet generates a network data file based on the currently loaded
case in the GUI, rather than from a .bse file.

2.8.5 ipfcut

ipfcut is a command line program that cuts out a subsystem from a solved base case file. The full system resides
in a base case file; the cut system is a card image Bus/Branch data file. Flows at the cut branches are converted into
equivalent generation or load on specially formatted +A continuation bus records. An ensuing power flow run should
solve with internal branch flows and bus voltages which are identical to those quantities in the original base case.

• Several methods are available to define the cut system: specifying individual buses, zones, base kVs, or individual
branches.

• A pi-back feature replaces selected buses with a passive-node sequence (lines consisting of sections) with the
original loads, generation, and shunts, pi-backed in proportion to the line admittances.

The function of CUTTING and REDUCTION are similar, but their methodologies are different. Both generate subsystems
whose internal composition and characteristics are identical to that of the base case. REDUCTION generates equivalent
branches, shunt admittances, and injections such that internal nodes still “see” the full system. CUTTING generates
equivalent shunt admittances and injections such that internal nodes can determine that the boundary has changed and
the external system has been cut out, even though the internal flows and nodal voltages are identical.

2.8. Command Line Tools 209



Interactive Power Flow

The CUTTING program mandates that the flow into the cut-out system is constant. This is valid for eliminating radial
feeder circuits, but not for eliminating a strongly interconnected external network. In the latter case, REDUCTION yields
a more responsive equivalent.

A simple criterion can be used to determine whether CUTTING or REDUCTION is more appropriate.

• Will a line outage or other major perturbation near the boundary of the retained subsystem and eliminated system
significantly alter the flow between the two systems?

If the answer is no, the flow will not be significantly altered, then CUTTING is acceptable. (It is the author’s opinion
that REDUCTION is always superior.)

The CUTTING program is initiated by entering ipfcut at the keyboard after the computer displays the system prompt.

From this point on the operation is interactive. You should respond to the questions as they are asked.

Cutting Methodologies

Two simple techniques are employed. Both may be used.

• Cutting the eliminated branches. In cutting, the active and reactive power flowing into a cut branch is replaced
with an equivalent but fictitious load, which is appended to the terminal bus with continuation buses (+A).

• Pi-backing loads of retained buses. In pi-back, the loads and shunt susceptances on selected pi-back buses are
distributed to neighboring terminal buses in proportion to their branch admittances. Only branch transfer sus-
ceptance is used (a good approximation when X >> R). Also, the pi-back bus may contain at most two branches.
This corresponds with early reduction schemes. The quantities pi-backed are appended to the terminal buses on
specially coded continuation cards (+A ***).

Input Commands

The syntax of CUT commands conform to the convention that has been adopted for the other IPF programs that use
commands.

[FICHE, copies=n]
(CUTTING, Project=name, case ID=name)

The qualifiers that select the subsystem and enable special options are listed below:

>DEBUG<
>EXCLUDE_BUSES<
>INCLUDE_BUSES<
>PI_BACK_BUSES<
>SAVE_BUSES...<
>CUT_BRANCHES<
>SAVE_ZONES...,SAVE_BUSES...<
>WSCC<

>WSCC< Enables the WSCC option. The default is no WSCC. Special processing is effected with this option:

1. Active power flowing from a cut branch into a bus is treated as a bus load under the WSCC option. Otherwise,
it is treated as a load or generation depending upon the sign of the quantity.

2. Base kV fields omit the decimal point without the WSCC option. For example, a 115.0 KV appears as “115”.
Under the WSCC option, the same field appears as “115.”. The WSCC Powerflow program interprets the base
fields as character instead of decimal, and those two fields are unique! Lane 115. is in New Mexico but LANE
115 is in Oregon!

210 Chapter 2. Contents



Interactive Power Flow

3. Line sections created from pi-back are consolidated into a single equivalent pi branch with the WSCC option
enabled. Otherwise, the branch records are preserved (with the necessary name changes). There is one exception:
If a step-up/step-down transformer-line transformer occurs, the branch is unconditionally made into an equivalent
section.

4. Any branch in the cut list that has an INT in the ownership field has its flow transferred to a +A INT continuation
bus instead of a +A *** bus.

>DEBUG< Opens the program debug file. Output appears on a file with extension .pfd. This is used only by the program
developers.

>SAVE_ZONES...,SAVE_BUSES...< Defines the retained network as all buses whose bases and zones both match
the specified list. If SAVE_BUSES is null or omitted, only zones are considered. Continuation cards begin with a + in
column 1.

For example: >SAVE_ZONES NA,NB,NC,ND,NE,NF,NG,NH, NI,NJ,NK,RM<

Any number of >SAVE_ZONE...SAVE_BASE< commands may be submitted. >SAVE_BASES...< defines the retained
network as all bases whose buses match the specified list. It is not necessary to type a decimal part unless it is part of
the base kV, for example, 13.8 but not 3.46. Continuation cards begin with a + in column 1.

The system is initialized as an eliminated network. The following commands define the composition of the retained
system. With the exception of

>CUT_BRANCHES<, the effect of the commands may be repeated in any order. Their effects are overlaid.

>INCLUDE_BUSES< >EXCLUDE_BUSES< >SAVE_BUSES< These commands introduce buses that are specified on bus
records that follow (B in column 1). >SAVE_BUSES is used to specify the entire cut system, bus by bus.

>INCLUDE_BUSES is used to expand the cut system with individually named buses. This is used in context with
>SAVE_ZONES or >SAVE_BUSES to provide more flexibility in the cut system.

>EXCLUDE_BUSES is used to contract the cut system with individually named buses. This is used in context with
>SAVE_ZONES or >SAVE_BUSES to provide more flexibility in the cut system.

A maximum of 1000 records are permitted. In the unlikely event that this is insufficient, the above command(s) may
be simply repeated with an additional block of bus records.

>CUT_BRANCHES< This command introduces branches that are specified on line records that follow (L, T, or E in column
1). A maximum of 500 cut branch records is permitted.

The CUT_BRANCHES are oriented in the following order: retained bus, cut bus.

The cut system is defined in the following manner. Starting from the set of all cut branches, each bus on the cut side,
which is in the eliminated system, is expanded one-adjacent by examining each branch connected to that bus. All
branches that are not connected to any bus on the retained bus side are in the cut system. Those terminal buses are
eliminated.

The first pass determines all buses 1-adjacent that are in the cut system. The process is repeated, starting with all buses
1-adjacent to the cut boundary to find all buses 2-adjacent. This process is repeated until no further expansion occurs
in either system. The major advantage of this approach is that any incomplete cut enclosure is properly diagnosed near
the missing branch.

If the WSCC qualifier is selected, any branch in the cut list that has an INT in the ownership field will have its flow
transferred to a +A INT continuation bus instead of a +A *** bus. This is done so that if this cut system is to be
reintegrated into another system the cut points can be easily identified and discarded.

Unlike other >...< commands, CUT_BRANCH cannot be repeated.

>PI_BACK_BUSES< This process replaces a bus having one or two branches with an equivalent consisting of bus gen-
eration, load, and shunt admittances on the adjacent terminal buses.

If the bus originally had two branches, the new system has the following changes:

2.8. Command Line Tools 211



Interactive Power Flow

• The buses’ generation, load, and shunt admittance are proportioned by the branch admittance to each terminal
node.

• The bus is eliminated.

• The subsystem consisting of a bus and two branches is replaced with a single branch spanning the two terminal
buses.

If the bus originally had one branch, the new system has the following changes:

• The buses’ generation, load, and shunt admittance are transferred to the terminal node.

• The bus and its branch are eliminated.

In essence, a pi-backed bus becomes a passive node in a branch that now consists of sections. Since the quantities
are pied-back in proportion to their branch admittances, the redistribution approximates the effects of REDUCTION. A
maximum of 1000 pi-back records may follow. If this limit is insufficient, the remaining pi-back records may follow
another >PI_BACK< command.

Interactive Approach

The following is an example of the dialogue that occurs during an interactive execution.

* command file is: J8301FY84.CUT
ENTER NAME for BUS/BRANCH output file > J83CUT.DAT
ENTER file name for OLD_BASE > A8301FY84.BSE

2.8.6 pvcurve

pvcurve is a command line program that automates production of power (P) voltage (V) curve plot files and plot
routine setup files for multiple base cases and outages.

2.8.7 post_pvcurve

post_pvcurve is a command line program that ?

2.8.8 qvcurve

qvcurve is a command line program that generates power-reactance curves.

2.8.9 findout

Command line interface that Generates a table of outages and corresponding branch overloads or bus voltage vi-
olations from power flow output (.pfo) files. Works with the .pfo output files of bpf runs that contain an /
OUTAGE_SIMULATION command. Runs as a post-processor to filter and sort the results and present them in tabular
form. Tables of ‘Outages and Overloads’ or ‘Outages and Bus Violations’ can be produced. Entries in these tables can
be filtered according to Zone, Owner, Base kV, Loading and Bus Voltage.

Tables can be sorted by Zone, Owner, Base kV, or alphabetically. The idea is to allow the user to automate the creation
of a report detailing the results of outages instead of having to do manually which generally includes cut and paste
operation with a text editor. Data fields in the output report table are character delimited to ease importing to Microsoft
Excel or DECwrite.

212 Chapter 2. Contents



Interactive Power Flow

2.8.10 lineflow

lineflow is a command line program that generates a table of values showing the requested branch quantities for
multiple base cases. Selects lines by branch list, bus, kV, owner, zone, loading level, or matches to ‘wild card’ input.
Sorts alphabetically, or by owner, zone, kV, loading (in percent), or according to input order of branches in a list.
Generates a control script that allows repetitive similar studies to be performed automatically. Reports the following
quantities: loading in Amps or MVA and percent of critical rating; or, power in, power out, and losses in MW. Data
fields in the output report table are character delimited to ease importing to Microsoft Excel or DECwrite.

2.8.11 mimic

mimic is a command line program that generates new cases given a list of base cases and a list of change files. Check
the new cases for over and under voltages, overloads, and excessive voltage and loading changes.

2.8.12 ipfsrv

ipfsrv is a service daemon which acts as the power flow server backend component of the X Window Graphical
Interface (gui). It executes Powerflow Command Language (PCL) commands dispatched from the gui. It gets launched
automatically by the gui.

2.8.13 ipfbat

Overview

ipfbat is a command line program that is the batch version of ipfsrv. It accepts a Powerflow Control Language
(.pcl) file. Plotting can be done with a control file; however, for most plots ipfplot is easier to use. Example of
use: ipfbat bench.pcl. The PCL commands used with ipfsrv and ipfbat are described in Powerflow Command
Language (PCL).

Batch Mode Plotting

Batch mode plotting can be used when a coordinate file already exists, and the user simply wants a hard copy diagram
based on that file and Powerflow data. If the Powerflow data is on a saved base case (*.bse) file, the simplest method
is to use the ipfplot program. However, ipfbat offers more flexibility and control. For example, with ipfbat you
can load, solve, and plot a netdata file.

This technique can be used to produce diagrams that are generally produced through the GUI or for access to features
that have not yet been implemented in the GUI. These features include plotting bubble diagrams, plotting difference
diagrams, and plotting diagrams from a master list of coordinate files.

An example of batch mode plotting is accomplished through the ipfbat program as follows:

ipfbat bubble.pcl

where the .pcl file is a control file with the IPF commands and data necessary to produce a hard copy diagram.

Commands in the examples are record groups starting with a / (slash) command and ending with the next / (slash)
command or (end) for the last command in the file.

Under the command /plot, the first line must name the coordinate file to be used, and the second must name the
output PostScript file to be produced. Any subsequent records following, before the next /command, are interpreted as
comments, and will be placed in the standard position following the last comment defined in the coordinate file.

2.8. Command Line Tools 213



Interactive Power Flow

Two special uses for comment records must be noted. If the record begins with an ampersand (&), it will be interpreted
as an instruction to append the auxiliary coordinate file named on the record. At most one such file may be named. If
the record begins with an ‘at’ symbol (@), it will be interpreted as an option record. Any diagram option indicated on
this type of record will override the option specified in the coordinate file. Multiple @ records are allowed and will not
be printed on the diagram.

Example 1

Make a “standard” diagram (similar to the GUI operation).:

/network_data,file=a92cy91.dat ! Load the powerflow network data
/solution ! Solve the powerflow case
/plot ! Make a hard copy diagram
aberdeenmetric.cor ! using this coordinate file
diagram.ps ! to build this postscript file.
Case prepared by: A. Perfect Planner ! Include this comment
Priority of study: RWI ! and this comment
&aberdeeninset.cor ! and this additional coordinate file.
@OPtion DIagram_type=Pq_flow ! Supplement/Override *.cor options.
/syscal ! Hello operating system ...
lpr diagram.ps ! ... send this file to the printer.
/exit ! This job is finished.
(end)

Example 2

Make a bubble diagram.

/old_base,file=j94cy91.bse ! Load the powerflow saved base case /plot ! Make a hard copy diagram bub-
ble.cor ! using this coordinate file diagram.ps ! to build this postscript file. BUBBLE PLOT EXAMPLE
! Include this comment. /syscal ! Hello operating system . . . lpr diagram.ps ! . . . send this file to the
printer. /exit ! This job is finished. (end)

Example 3

Make a difference diagram.:

/old_base,file=9_bus_test.bse ! Load the powerflow saved base case
/get_data,type=load_ref_base,file=bus_alt1.bse ! Load a reference

! saved base case
/ get_data, type = load_ref_area ! load reference solution data in tables
/plot ! Make a hard copy diagram
9bus_metricdif.cor ! using this coordinate file
diagram.ps ! to build this postscript file.
Case prepared by: A. Perfect Planner ! Include this comment
Priority of study: RWI ! and this comment
Difference plot between two cases ! and this comment.
/syscal ! Hello operating system ...
lpr diagram.ps ! ... send this file to the printer.
/exit ! This job is finished.
(end)

214 Chapter 2. Contents



Interactive Power Flow

Example 4

Make a series of diagrams from a list of coordinate files.:

/old_base,file=/shr5/j96cy89.bse ! Load the powerflow saved base case
/plot ! Make a hard copy diagram
master.cor ! using all the coordinate files

! listed in this file
diagram.ps ! to build this postscript file.
Case prepared by: A. Perfect Planner ! Include this comment
Priority of study: RWI ! and this comment on each diagram.
/syscal ! Hello operating system ...
lpr diagram.ps ! ... send this file to the printer.
/exit ! This job is finished.
(end)

Example 5

Here is an example of a master coordinate file (master.cor).:

master
/home/dave/cor/3rdac.cor
/home/dave/cor/500bus.cor
/home/dave/cor/bubble.cor
/home/dave/cor/sworegon.cor
/home/dave/cor/nwmont.cor

2.8.14 ipf_test

ipf_test is a command line program that provides an interactive way to run Powerflow Control Language commands.
It is similar to ipfbat but prompts the user for input data rather than reading the power flow commands from a file.

2.8.15 ipfnet

ipfnet is the batch version of the “save netdata file” function built into the GUI / ipfsrv. This program generates
a WSCC-formatted network data file in any of the following dialects: BPA, WSCC, or PTI. The GUI allows you to
save a network data file describing the case you currently have loaded. This should not be confused with the netdat
program, which performs very similar function by loading a saved base case (.bse) file and writing it out in an ASCII
network (.net) file.

Both programs generate a WSCC-formatted network data file in any of the following dialects: BPA, WSCC1, or PTI.
“Dialects” means that although the file is still WSCC format, the data is generated with special processing or restrictions
and is destined for use with other programs. In the case of the PTI dialect, that data is intended to be processed by the
PTI-proprietary conversion program wscfor.

This program extracts network data from a Powerflow “old base” history file. Table F-1 below summarizes the effects
of each dialect.

2.8. Command Line Tools 215



Interactive Power Flow

Table 2.8.1: Effect of Dialects on Network Data File
Record or Field Dialect Effects
Header comments PTI

Three header records:
“<case_name> ”
“<case_name> ”
“<case_name> “

BPA, WSCC, WSCC1 ./CASE_ID = <case_name>
./CASE_DS = <case_description>
./H1 <header 1 text (auto-
generated)> ./H2 <header 2 text
(user input)> ./H3 <header 3 text
(user input)> ./C001 <comment 1
text> . . . ./Cnnn <comment nnn text

Area “A” records BPA, PTI Encode zones 1-10 in “A” record,
zones 11-20 in “A1” record, etc.
Note: Voltage limits on “A” records
are not encoded. They are specified
by a default array that establishes
limits using base kV and zones.

WSCC, WSCC1 Encode only “A” record (any zones
11-50 will be lost). Note: Volt-
age limits on “A” records are not en-
coded.They are specified by a de-
fault array that establishes limits us-
ing base kV and zones.

Intertie “I” records BPA, PTI Single entry (low alpha to high al-
pha) associated “I” records follow
each “A” record.

WSCC, WSCC1 No “I” records encoded.
Default percentages on type BG
buses

BPA BG percentages are not changed.

PTI, WSCC, WSCC1 BG percentages are calculated if
their default value is invalid.

Continuation “+”” bus records BPA “+” records are encoded.
PTI, WSCC, WSCC1 “+” records are consolidated with

“B” records.
Reactive capability “Q” records BPA “Q” records are encoded.

PTI, WSCC, WSCC1 “Q” records are not encoded.
Minimum branch impedance BPA, PTI Branch impedances are not changed.

WSCC, WSCC1 Minimum branch impedances are
set to 0.0003 p.u.

Branch ratings BPA Options: 1. Use extended ratings
(120-character records). 2. Re-
place nominal rating with minimum
(Emergency, Thermal, or Bottle-
neck). 3. Use nominal rating only.

PTI, WSCC, WSCC1 Options: 1. Replace nominal rating
with minimum (Emergency, Ther-
mal, or Bottleneck). 2. Use nominal
rating only.

Branch sections BPA Encode as originally submitted.
PTI, WSCC Encode all branch sections in a con-

sistent orientation.
WSCC1 Consolidate all sections into an

equivalent branch
Regulating “R” records BPA Encode as originally submitted.

PTI, WSCC
1. Encode as adjustable tap side-

fixed tap side.
2. Consolidate parallel LTC trans-
formers into a single, equivalent par-
allel LTC transformer.

WSCC1
1. Encode as adjustable tap side-

fixed tap side.
2. Consolidate parallel LTC trans-
formers into a single, equivalent par-
allel LTC transformer. 3. Convert
taps into steps (STEPS = TAPS - 1).

D-C “LD” record BPA PTI, WSCC, WSCC1 Encode as originally submitted. En-
code as rectifier side-inverter side.

216 Chapter 2. Contents



Interactive Power Flow

The resultant output is an ASCII file. Two formats are available for the resulting output. The BPA format retains all
of the extra features that are available in the BPA Powerflow program without making any modifications to the data,
while the WSCC format option consolidates and restricts the features in order to be used with WSCC’s IPS Powerflow
program.

The CASEID of the power flow case data being extracted is used to create a file named CASEID.DAT. Any changes
made to the data for WSCC (IPS) compatibility will be flagged on file CASEID.MES.

Input

The ipfnet program prompts with the following requests:

• File name of the Powerflow “old base” history filename.

• Select output format desired: BPA, BPA1, BPA2, WSCC (IPS), or WSCC1 (IPS1).

Sample Run

Type ipfnet at the system prompt and press the <RETURN> key. Answer the questions appropriately. An example
is given below.

$ ipfnet
> Enter OLD_BASE file name (or Q to quit): ../dat/43bus.bse
> Enter name of network file (default is "../dat/43bus.net"): new.net
> Enter dialect (BPA, WSCC, WSCC1 or PTI): WSCC
> Enter record size (80 or 120): 80
> Nominal rating replacement code

T = Thermal E = Emergency B = Bottleneck
T: Transformers = T, Lines = T
E: Transformers = E, Lines = T
B: Transformers = B, Lines = B
ET: Transformers = E, Lines = T
EB: Transformers = E, Lines = B
M: Transformers = min(TEB), Lines = min(TB)

> Enter rating replacement code: T
* Options selected - dialect = WSCC

size = 80
rating = T

> Are above options correct (Y or N)? Y

Note: The codes for dialect and rating must be upper case. ipfnet formats commands which are sent to ipfsrv.
Some input checking is done, but invalid values may cause unexpected results.

2.8. Command Line Tools 217



Interactive Power Flow

2.8.16 ips2ipf

The Record Formats used by IPF are defined in ASCII format and consists of area, bus, and branch records. This format
is very similar to the format used by the Western Systems Coordinating

Council (WSCC) back in the 1990s in their similarly named Interactive Powerflow System (IPS) applica-
tion. However, note that IPF supports many record types which are not recognized by IPS, and in some
cases the interpretation and application of the data values entered is different.

The ips2ipf command line program is designed to ease the burden of converting an IPS data deck into one which
can be input to the IPF program with the expectation of getting the same powerflow solution results, within normal
engineering tolerances. However, the conversion is not 100% automatic. See IPS IPF Differences section for more
detail on the data input and internal modeling differences between the two programs.

Before running ips2ipf on an IPS data file, you should remove from the file all COPE commands (TITLE, NEW,
ATTACH, etc.) The program will handle the standard ‘control cards’ HDG, BAS, and ZZ. Title records may be retained
by putting an HDG in front of them, or by putting a period (.) in column 1 of each. An unlimited number of (.)
comments are is allowed, but these only annotate the data; they are not printed anywhere in the output.

ips2ipf performs the following tasks:

1. Renames duplicate buses.

IPS uses a 12-character bus name, which includes the base kV. IPF uses only 8 characters, plus the
real value of the base kV. To IPS, SAMPLE 230. and SAMPLE 230 are two different buses; to IPF
they are the same bus.

ips2ipf identifies duplicate names and generates a different name for one of them. It reports any
changed names; if you don’t like the name it generated, you can change it after the fact.

2. Makes the system swing bus a BS bus, if given its name.

3. Transfers non-zero shunt vars from BE and BQ records to +A records.

In IPS, the shunt vars value entered for a bus which has variable var output is considered to be
a fixed component of the total vars. In order to retain this philosophy in IPF, it is necessary to
put the shunt on a +A (continuation bus) record. Shunt vars entered on the BE or BQ record are
considered by IPF to be continuously variable.

4. Converts non-zero ‘steps’ on R records to ’taps’ (by adding one).

IPS uses the number of steps available between TCUL taps; IPF uses the number of actual taps. If
you run the conversion on an already converted file, another one will be added, which is probably
not desirable.

5. Converts IPS comments (C in column 1) to IPF comments (. in column 1).

Unlike IPS, which prints the comments in the input data listing, IPF does not print them at all. But
they can remain in the data file itself for information as long as they have a period in column 1 instead
of a C.

6. Copies the controlled bus name from each X record to the corresponding BX record, to ensure that
the proper bus is being controlled.

7. Copies the voltage limits from a BX record controlling a remote bus, to the remote bus record.

8. Corrects blank section id’s in multi-section lines.

Blank is acceptable to IPF as a section identification only on single-section lines. ips2ipf
identifies multi-section lines, and changes blank to 1, 1``to ``2 etc. If there are actually
10 sections (IPS limit), then sections 8 and 9 will be combined and labeled 9.

218 Chapter 2. Contents



Interactive Power Flow

9. Gives bus ties a small impedance.

IPF does not allow bus ties (0.0 impedance produces a fatal error.) ips2ipf changes this to (0.0 +
𝑗0.00001), the same impedance IPF gives you when you sectionalize a bus and create a “bus tie”
between the new bus and the old one. However, you should note that this may cause difficulties in
getting a solution. (There are no zero impedance lines in standard WSCC study cases.)

10. IPF has no RF model. Any RF records in your deck will be ignored.

Items which are not handled by ips2ipf, which you need to look out for, are the following:

11. In IPS, line and bridge current ratings on DC are not processed, but only passed on to the Stability program. IPF
actually uses them. You may find that the bridge current rating on the Intermountain DC line is too low.

IPS IPF Differences

1. Powerow Command Differences: All IPF commands are different from those in IPS. When you are
using the GUI, you will not have to worry about any of these, but there are some things you will need
to do to your input data deck, such as deleting all the IPS control records and COPE commands (HDG,
BAS, TITLE, ATTACH, $DONE, END, etc.).

2. Terminology: The IPF Base Case (.bse) le is a binary le equivalent to the IPS History (.HIS) le.
However, the Base Case le does not contain any mapping data, and only one case per le is permitted.
The IPF Network (.net) le is an ASCII le equivalent to the IPS base case or base data le (.IPS).
However, this le must not contain any modication records (’M’ or ’D’ in column 3). Changes go in
a different le, which must be loaded separately. All mapping data is saved (in PostScript format) in
a Coordinate le (.cor). Only buses which have a match in the currently loaded system data will be
displayed.

3. Case Title: IPF builds the first line of a three-line IPS style title from the 10 character Caseid and
the 20 character case description fields, and the other two lines from the two HEADER records. All
of these are printed on standard BPA output listings, saved on the base case (history) file, and printed
on hardcopy maps.

4. Structure: The IPF Changes file (.chg) contains new and modification records you want to apply in
bulk to your base case (e.g. your own local system representation). You will use the GUI to make
individual touch-up or particular study changes. The system slack bus must be specified as a ’BS’
bus in the Network file; there is no GUI provision for selecting a slack bus (other than by changing
the type of some bus to BS).

5. Data Differences: IPF system data is very similar to that for IPS, but is not identical. If you try to
read in a WSCC base case deck as an IPF network file, you can expect numerous data errors and no
solution. If you charge ahead, fixing fatal errors as you stumble over them, you will still probably not
get the answers to match, because of modeling differences. The data conversion program handles
most of these. There are two categories of differences between BPA and WSCC power flow models:

a. Modeling differences (including BPA extensions).

b. Input data differences

2.8. Command Line Tools 219



Interactive Power Flow

WSCC’s IPS BPA’s IPF
1 The DC line current rating is used only as a

base by IPS. Both line current and bridge
current ratings are passed to the Stability
program; they are not used as limits in the
powerflow solution.

The minimum of the bridge current rating and the
line current rating is used as a limit by the DC
system solution

2 Type RM phase shifters (controlling :math:
P_{km} between 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥) will bias
the phase shift angle towards the original
phase shift angle.

Type RM phase shifters (controlling 𝑃𝑘𝑚 be-
tween 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥) will bias the phase shift
angle to zero degrees to minimize circulating real
power flow.
WSCC bias is available as a solution option on the
GUI.

3 A type BG generator may control only bus
type BC.

A type BG generator may control bus types BC, B
, BQ, BV, and BT.

2 An LTC may control only bus type BT. An LTC may control bus types BC, B , BQ, BV,
and BT.

5 Only one voltage control strategy per bus. A generator and an LTC may simultaneously con-
trol a common bus. If a degree of freedom exists,
the LTC will control 𝑄𝑘𝑚 directly to minimize
transformer var flow between terminal buses.

6 Type BX buses will bias the solution towards
the original 𝑋𝑠ℎ𝑢𝑛𝑡.

Type BX buses bias the solution to 𝑉𝑚𝑎𝑥. WSCC
bias is available as a solution option on the GUI.

7 Infinite default limits are assigned to type
BG buses.

Default global voltage limits are assigned to all
buses, including type BG buses, by base voltage
level.

8 The bus shunt reactive on type BQ buses is
fixed.

The bus shunt reactive on type BQ buses is contin-
uously adjustable (0 to 100%).
To make that quantity fixed, it must be entered on
an accompanying +A continuation bus record.
The conversion program automates this.

9 Inductance (G-jB) is applied to only one
end of a transformer branch.

One half of G-jB is applied to each end of both
transformers and balanced pi lines.

10 Model RF phase shifter takes several itera-
tions to get from an initial angle to its final
(fixed) phase shift angle.

No such model. Problems in solving phase
shifters are handled internally.

11 Phase shifter must have same base kV at
both terminals.

Step up phase shifter. Tap2 field is off-nominal
tap2.

12 Phase shifter cannot be a section. Phase shifting transformer can be a section.
13 Bus ties (zero impedance lines) receive spe-

cial handling in solution and reporting.
No special bus tie model. A ‘bus tie’ is defined as
a very low impedance line (0.0 + j0.00001).

14 Not available. + continuation bus records. Except for con-
stant current load models, these records are used
mainly for accounting purposes to differentiate
generation, load, and shunt with unique owner-
ships.

15 Not available. I area intertie records. These records compute net
area export on accompanying A records.

16 Not available. A area record may be accompanied with A1, A2,
A3, and A4 continuation records to accept a max-
imum of 50 zones per area.

17 Not available. Branch records accept extended line current rat-
ings:
For types L and E records, thermal and bottleneck
ratings.
For types T and TP records, thermal, bottleneck
and emergency ratings.

18 Not available. Types BM and LM multi-terminal DC data.
19 Not available. Type RZ RANI devices.
20* Base kV field interpreted as A4 for iden-

tification purposes. SAMPLE 20.0 and
SAMPLE 20 are different buses.

Base kV field interpreted as F4.0. SAMPLE 20.0
and SAMPLE 20 are the same bus.

21* The number of steps on R records are in-
terpreted as steps, where STEPS = TAPS -
1

The number of steps on R records are interpreted
as number of taps, where TAPS = STEPS + 1

22* A parallel branch consisting of sections will
accept section numbers in the set [0-9].
(Blank is interpreted as a zero.)

A parallel branch consisting of sections will ac-
cept section numbers in the set [1-9]. Zero or
blank can be used as a section number only be
used on delete, to remove all sections of one cir-
cuit.

23* Remotely controlled bus for a BX bus is
specified on the X record.

Remotely controlled bus for a BX bus is specified
on the BX record.

24* Voltage limits for a bus remotely controlled
by a BX bus are specified on the BC record.

Voltage limits for any bus, no matter how it is con-
trolled, are specified on the controlled bus record.

25 Voltage limits (for reporting over and under
voltage buses) are specified on A records

Default voltage limits (for all purposes) are spec-
ified by a default array which establishes limits
using base KV and zones.

26* Branches entered with both R and X equal to
zero receive special handling as ‘bus ties’.

Zero impedance is not allowed - no bus tie simu-
lation.

27* The system slack bus can be designated as
a BS type bus, but very often is specified in
the SOLVE options instead.

System slack bus must be specified as a ``BS ``
bus.

28* IPS accepts various types of comment
records (CB, CL, CR) which annotate the data
file, and are printed in the (batch) input list-
ing.

IPF uses a .` (period) in column 1 to designate a
comment. These annotate only the data file; they
are never printed.

220 Chapter 2. Contents



Interactive Power Flow

• The conversion program will handle this item.

2.9 Transient Stability Program (tsp)

The tsp program performs dynamic (e.g. generator rotor angle, governor output, power system stabilizer output, etc.)
simulation of a power system when disturbed from its steady-state condition under various perturbations such as three
phase faults, line to line faults, line to ground faults, loss of generation, etc.

2.9.1 Program Description

There are basically two methods of simulation used in this program. All differential equations are linear and solved
by the trapezoidal rule of integration. The network equations are solved iteratively using the triangularized admittence
matrix. Both of these methods are described in the paper Fast Transient Stability Solutions (IEEE Transactions on
Power Apparatus and Systems, July/August 1972) written by Hermann Dommel and Nobuo Sato.

The diagram ?? shows that the swing program is divided into solution and output portions. The solution portion creates
a swing solution file which saves all output data for all busses in the study. This structure allows the user to run the
solution portion and save the swing solution file. Then, using the swing solution file, the power flow output file, and
the swing output data file, the user can run any number of output jobs without resolving the solution.

The program is designed to run in conjunction with the IPF power flow program (bpf). The diagram ?? shows the
interconnection between the power flow and transient stability program. Note that both the soution and output portions
of the swing program require a power flow output file (.bse) as input.

The program also has a save data feature which allows the user to enter the majority of the swing input data via a save
data file and enter only the line switching and FF records in the swing input file. This is useful when a series of swing
studies are run using the same basic data but with different system perturbations.

Appendix C shows examples of how to create a save data file, how to run a study using a save data file, and how to
run an output only job using the swing output file. The command files show how to make the necessary logical file
assignments.

The DEBUG and COMMENT records are optional. Any information on the COMMENT records appears on the output
listing as well as on the plot headings.

The switching records (LS) contain a variety of features and enable the user to properly define each event in chrono-
logical order. Several examples in preparing LS records are covered in ??.

The LZ record is used with the LS record and permits changing branch admittance quantities in the transient stability
program.

The MZ record has the special feature which permits remote control signals for power system stabilizers and excitation
systems. This card also inputs the generation transformer data for low-side generator bus determination not represented
in the power flow but required for the excitation system.

Several control parameters and codes are available to the user and are entered in the DEBUG, CASE, FF, and 99 records.
The CASE record and the 99 record have print options and the FF record contains several control parameters and codes
for proper operation.

The output portion of the program provides the output data in the form of listings and/or plots. The plotting routines
were written for a VERSATEC plotter and this code is not very portable.

If line impedances were modified during the solution portion of the program, to correctly output data for these lines
the output portiong of the program must be given the modified impedances via line modifiation (LM) records. ?? gives
an example of how to use LM records.

2.9. Transient Stability Program (tsp) 221



Interactive Power Flow

The remaining information for the Transient Stability Program has not yet been migrated to ReadTheDocs format. See
TSP Users Guide PDF for details.

2.10 X Window Graphical Interface (gui)

This section presents information about the X Window graphical user interface (gui) for IPF.

Fig. 2.10.1: Interactive Power Flow X Window GUI

IPF’s X Window GUI interface makes data entry and modification easy. It also simplifies the running of base case
solutions and the printing of network diagrams. This guide shows how to use the major features of IPF. Users who
need details about data input record formats or system models should consult the Record Formats section.

IPF’s GUI uses the X Window System and the OSF/Motif window manager interface. The graphical user interface fea-
tures an interface that will be familiar to people who use an X Window System before, but it will feel a bit cumbersome
compared to modern day applications.

222 Chapter 2. Contents

https://github.com/mbheinen/bpa-ipf-tsp/blob/master/manuals/TSP_UsersGuide.pdf


Interactive Power Flow

2.10.1 Audience

You will be expected to already know the basics of power flow programs in general. You will find that small changes
in bus and branch values are easier to make in the GUI than trying to manage through ASCII text files and running
bpf commands on the terminal. For example, users will get a feel for how changes to the input data affect the solution
voltages in a network much more quickly with the GUI than by using a terminal style interaction.

2.10.2 User Interface

The X Window System and the OSF/Motif window manager use certain descriptive terms for actions performed with
the mouse. These terms are defined here. In addition, some keyboard actions are also defined. See the table below.

Keyboard Conventions

The following conventions are used for key strokes. Generally, a hyphen (-) connects key names that should be pressed
and held, starting from left to right. For example, the key sequence Control-c Shift-E means to press and hold the
Control key and then press c. Release this combination and press and hold the Shift key and then the E key. Then
release these keys. A different example: Esc f means to press and release the Esc key followed by the f key.

In general, the mouse operation and keyboard operation follow the conventions of the Motif interaction style guidelines.
These are found in the OSF/Motif Style Guide. Many aftermarket books about Motif cover these conventions also.

X Window System

This chapter provides a quick introduction to the X Window System and X window managers with emphasis on the
OSF/Motif window manager. The treatment here is certainly not exhaustive or even complete. But it is intended to
give you enough background to successfully use the Interactive Powerflow (IPF) program.

If you have not used an X Window based GUI before, be sure to go through this chapter for some pointers so that
you’ll be headed in the right direction. If you would like more information, refer to the following books resources the
X Window System and OSF/Motif.

• Open Software Foundation. OSF/Motif Style Guide Revision 1.1. Prentice Hall, 1991. This provides the official
description of OSF/Motif look, feel, and behavior for OSF/Motif software developers. Though not oriented
toward OSF/Motif users, this book does give precise descriptions of all OSF/Motif components and behavior.

• Quercia, Valerie and Tim O’Reilly. X Window System User’s Guide OSF/Motif Edition. O’Reilly & Associates,
Inc., 1991. This is a good, general introduction to X and OSF/Motif.

• Motif Programming Manual

Broadly speaking, the X Window System is designed to deliver mouse-driven menu/window user interface applications
over a local area network.

The X Window System specifies that the “look and feel” of its user interface be “policy free.” Because of this, pro-
grammers are free to create their own look and feel within broad limits. Over the past few years, Sun Microsystems,
AT&T, and the Open Software Foundation have all created GUIs for the X Window System with a distinct look and
feel. The Open Software Foundation offers OSF/Motif.

Like most large software systems, X and its environment have a jargon of their own. Here are a few terms you should
know:

Server

The part of X resident in your local computer (or X terminal) memory. The server has three main tasks.
First, the server takes care of communicating with the mouse and keyboard. Second, it takes care of
managing X resources, such as fonts and colors. Third, it communicates with X applications.

2.10. X Window Graphical Interface (gui) 223

https://www.oreilly.com/openbook/motif/vol6a/Vol6a_html/toc.html


Interactive Power Flow

Client

A stand-alone X program. Clients are the X programs that you use to accomplish your work, such as
drawing graphs, preparing text, making power flow calculations, etc. Clients usually reside in a computer
across the local area network, but they can also reside in the same memory as the server itself. Clients and
servers communicate through a special language (“protocol”) that is especially efficient for communication
over a Local Area Network (LAN).

Resources

X components that are held and managed in common for X clients by the server. X resources reside in
your local computer (or X terminal) memory just like the server. X resources are things like fonts, color
“pixmaps,” font information, etc.

Window manager

A special X client that handles the window services of other X clients. There are a number of different X
window managers, not just one, but you only use one window manager at a time.

X terminal

A special purpose computer having a built-in X server, and connection hardware and software for a LAN.

LAN

A Local Area Network usually based on the hardware and low-level software standard of Ethernet. For
Unix computers, the software communication protocols are usually based on the TCP/IP standard. PC
networks may use different hardware and software network communication standards.

The GUI portion of IPF is a server; the powerflow portion is a client. These two programs may reside on different
computers, in which case the GUI will be running on the machine you are sitting in front of, and the powerflow will be
running on a workstation somewhere else, perhaps a network server. Note that the X Window terminology for “client”
and “server” is reversed from the network communication terminology. It is also possible for both client and server
applications to be running on the same computer.

The figure above shows you the basic architecture and communication model of the X Window System. Something
you should note is that the client (application) program may be physically residing on a completely different computer
from the one that your keyboard, mouse, and display are attached to. To access the remote application, you only have to
know the name of the computer your client is on. (You also must have permission to use the other computer, of course,
and it must be connected properly to the LAN.) The X Window System was designed from the ground up to run in a
distributed computing environment.

When you are running a client, such as IPF, over the network, in contrast to running it in your own computer’s local
memory, you will ordinarily notice very little performance degradation due to network traffic, though there may be
some depending on how busy the network is. X is designed to minimize network communication.

The server side of X resides in your own computer’s (or X terminal’s) memory. There is one X server for each user’s
keyboard, mouse, and display. The server is dedicated to you. However, your server may communicate simultaneously
with many different X clients, not just IPF. And again, these other clients may be anywhere out on the LAN. Thus, in
any one X session (between “login” and “logout”), you may run many X clients on many different computers. The
server manages all this.

When your client requests a certain font, the server delivers it. When your client requests different colors for graphical
objects, the server consults the color map for that client and delivers the correct colors. Fonts, colors, and certain other
server-managed software components are termedresources. Some resources such as colors and fonts you can change in
your own account’s IPF resources file, XGUI. See Customizing the GUI (XGUI) if you would like to learn more about
this.

224 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.2: A Server, Some Clients, and a LAN

2.10. X Window Graphical Interface (gui) 225



Interactive Power Flow

2.10.3 A Summary of Motif Basics

IPF is designed to run and look best with the Motif window manager. This section introduces you to some Motif
window manager basics. However, for detailed information, turn to the books cited at the beginning of this section.

Motif Windows

Motif windows are rectangular areas of the display. Various Motif components surround a central area where text
and/or pictures appear. See example below. These components are controlled by the Motif window manager. However,
the central area is controlled by an X client, which is a completely separate program from the Motif window manager.
IPF gui is an X client, so it controls only the interior of Motif-managed windows. Because of this separation, you may
notice that IPF’s windows can still be moved, iconized, etc., even though the IPF client may not be responding.

In the figure below, the Terminal Emulator client controls the central display (where the text is), the Menu Bar, and the
Scroll Bar. The Motif window manager (client) controls all the rest of the window.

Motif Resources

Like the X Window System, Motif has resources that you can change. Resources are system controlled components
such as fonts, colors, initial size and position of windows, etc. Many X clients (application programs) have customizable
resources. Since the Motif window manager is just another client, it has customizable resources, too.

Resources can be changed in two ways:

• Change the dedicated client resource file with an ASCII text editor. On Unix systems, the Motif resource file is
named .mwmrc and the X resources file is .Xdefaults

• Use a dedicated X application that provides a regular GUI interface for changing the resource file.

Since interpreting the meaning of the resource specifications is not always easy or straightforward, it is recommended
that you look for a dedicated X client for changing resources. Your Motif system probably has this X client already
available, so that all you have to do is choose the Motif resource editor as a command on a system menu. Possible
names to look for are System Setup, Configuration, User Preferences, or something similar. The editing of the many
resources may be broken out on your system menus as separate commands, such as Colors, Fonts, Sizes, etc.

As a second choice, use a Motif book to help you interpret the meaning of the resource specifiers in the .mwmrc file
and edit them with an ASCII editor such as the vi ASCII editor. Nearly all Unix systems have vi.

Common Windows Tasks

This section goes through a few common window and menu tasks to give you a feel for the Motif interface. Some tasks
can be done through a menu command and through direct manipulation of a graphic component. And, in addition,
many tasks can be accomplished through a sequence of keys without recourse to mouse movement or button clicks.
The following brief descriptions concentrate on direct graphic component manipulation since this is usually the quickest
way to get something done in Motif.

226 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.3: Motif Window Components

2.10. X Window Graphical Interface (gui) 227



Interactive Power Flow

To move a window

Motif windows have a title area at the top. The window shown above has “Terminal Emulator” in the title area. You
move Motif windows by “grasping” the window in this area and dragging it to a new location.

1. Move the mouse cursor to any point within the title area.

2. Press and hold the left mouse button.

3. Move the window to another location of the display. You will note that an outline box of the window shows you
the dimensions of the window as you are moving.

4. Release the button. The window appears at the new location.

To reduce a window to an icon

Icons are small, rectangular graphic objects that represent the main windows of Motif applications. Icons have many,
but not all of the same attributes as windows - for example, they can be moved like windows. Icons are used to organize
the display and reduce clutter. You are free to put icons wherever you like on the display. Some Motif systems organize
icons in a special window, which looks like a desktop.

1. Click the Minimize button at the top right of a window. This shrinks the window to an icon and automatically
places the icon at a predetermined place on the display. (Note that this place may be obscured by other windows!)

2. Move the icon as you would a window by placing the cursor over the icon, pressing the left mouse button, moving,
and releasing the button.

To change an icon into its window

An icon can be changed back into its windows by double clicking on it. The window will “remember” where its previous
position was. Sometimes the timing between clicks is important, so make sure you do it fast enough.

1. Find an icon (or create one) and move the mouse cursor over the icon. Double-click the left mouse button. Be
sure to keep the mouse cursor stationary between clicks; otherwise, Motif may interpret your actions as a “move
icon” operation.

2. If you find that a menu pops up, select the Restore command by moving the cursor over the word and clicking
once.

To resize a window

Motif windows have a narrow border that acts as a “handle” for resizing operations. There are eight parts to the border
— four corners and four sides. The corners are used to resize simultaneously both adjacent sides, and the sides are
used to resize just one side at a time. The following procedure describes a common resizing operation.

1. Move the mouse cursor over the lower right corner. Note that this corner is demarcated by two cross cuts on
the border a short distance away from the corner. The cursor may change its appearance when it is in this area,
indicating that it is in the right position.

2. Press and hold the left mouse button on the lower right corner.

3. Move the mouse to the inside or outside of the current window.

4. Release the mouse button when you are satisfied with the size.

228 Chapter 2. Contents



Interactive Power Flow

The opposite (upper left corner) remains stationary while you move the mouse around. A border line for two sides
shows up to give you an idea of the size of the window as you move. Also, a pixel counter of the vertical and horizontal
dimensions shows up to give you feedback if you need it.

If the corner or side the you want to grab is not visible on the screen, move the window until it is.

To enlarge a window quickly

The Maximize button in the upper right corner is a quick way to enlarge a window to the maximum size of your display.

1. Move the mouse cursor over the Maximize button in the upper right corner of a window.

2. Click the button. Note that the window now covers the maximum area of the display. (All other windows should
be covered.) You can resize the window using the directions above.

To pop up a window’s menu

All Motif windows have a minimum set of window management functions available in the upper left corner via the
Window Menu button. Many of the functions described above are available through this menu. Some additional ones
are there too, such as Close, Restore, and Lower.

1. Move the mouse cursor over the Window Menu button in the upper left corner.

2. Press and hold the left mouse button. Note that a menu pops up. Select one of the commands on the menu by
moving the mouse cursor over the command and releasing. Only commands that are clearly visible are selectable.
Those which are “grayed out” are not accessible or appropriate in the current context.

Closing a window causes the window to disappear from the display, so be careful because it can also quit the application.
In the beginning, you may not know how to restart an application! (Look for a Motif window called the Session
Manager. Your system operator has probably set up your account with a Session Manager. See if you can find the
closed application on a menu in your Session Manager, so that you can re-open the application if you accidentally close
it.)

Lowering a window means to cause it to go to the bottom of the windows “stack.” Think of Motif windows as pieces
of rectangular paper on a desk. The ones that overlap have an order from top to bottom. The Lower command causes
movement of windows in the stack from top to bottom. Experiment with the command to see how it works. You bring
“buried” windows to the top by pushing visible ones down with the Lower command. Note, however, that if you see
any piece of a Motif window, you can just click on or inside the border to bring it immediately to the top.

2.10.4 IPF as an X Client

IPF is built on top of the X Window System and uses the facilities of an X window manager of your choice. (However,
the recommended window manager is Motif.) In the figure below, you can see that both the X server and the GUI part
of IPF reside on the user’s computer. Another client that is always present on the user’s computer is the user’s window
manager. This is not shown in the figure below, however. In most configurations, the “engine” (ipfsrv) part of IPF
resides on the user’s computer, but may, as shown below, reside on some other computer across the LAN.

When you start up IPF, the GUI initializes itself, initializes ipfsrv, and then brings up IPF’s window interface.

2.10. X Window Graphical Interface (gui) 229



Interactive Power Flow

Fig. 2.10.4: PowerFlow/GUI Communication

230 Chapter 2. Contents



Interactive Power Flow

2.10.5 IPF X Window GUI Architecture

The figure below shows a high-level view of the IPF X Window GUI and its environment. IPF is divided into the GUI
code, which is written in C, and the powerflow code, which is written in Fortran. When you run the X Window System
and Motif, you are using the Motif and X libraries in addition to Unix operating system calls and IPC (Interprocess
Communication) calls. The GUI part of IPF (gui) uses the Motif library and IPC calls. The powerflow part of IPF
(ipfsrv) uses IPC calls.

Because the Motif library is used for IPF, the Motif window manager is recommended for running with IPF. You can
use another window manager with IPF, but the program will not have a consistent look and feel. The functionality
remains the same, but you will notice a visual style within the IPF client that is different from the window manager,
which controls the display outside the IPF windows and dialog boxes.

Fig. 2.10.5: Powerflow/GUI and System Software

2.10.6 History

Some key developments took place in the late 1970s and 1980s that made possible the X Window System and the X
window managers.

• The idea of the graphical user interface (GUI) was created, implemented, and became popular.

• Personal computers became powerful enough to handle the data and processing intensive GUI.

• Efficient, fast, inter-computer communication - the local area network (LAN) — became widespread.

• A general purpose, non-proprietary operating system - the UNIX operating system — achieved wide acceptance.

All of these developments contributed materially to the possibility and, indeed, the eventual widespread acceptance of
the X Window System and X window managers.

In the late 1970s, medium-sized computers began to get powerful enough to handle information organized graphically
rather than in a character-based (textual) way. They also began to get cheap enough to be dedicated to one person. It was

2.10. X Window Graphical Interface (gui) 231



Interactive Power Flow

on one of these computers that the Xerox Corporation installed the very first GUI using a mouse, menus, and windows.
This GUI borrowed heavily from the Smalltalk-80 user interface, which was also invented at Xerox. (Smalltalk-80 is
an object-oriented programming environment and system.)

GUI - graphical user interface - simply means using the graphics capability of a computer as the primary mode of
interacting with users. A few GUIs do not, in fact, use a mouse, menus, and windows. However, GUIs using this
combination of elements became common early because of their inherent ease of use.

Meanwhile, truly affordable personal computing was taking off in the late 1970s and early 1980s with the Apple and
then IBM PC computers. These computer architectures were essentially graphical in nature, especially the Apple,
though their interfaces were still character-based.

In 1984, Apple introduced the first personal computer with a thorough-going GUI. This was the Macintosh. This
computer introduced wide numbers of people to a very easy to use graphical interface. It showed many computer
manufacturers that they needed to design with GUIs in mind. A few years later, Microsoft Corporation retrofitted a
windowing system onto MS DOS IBM PC-compatible computers.

Also in the late 1970s and 1980s, Sun Microsystems, Hewlett-Packard, DEC, and other companies saw the need for
powerful computing “workstations” that business, research laboratories, and government could use. These workstations
became common where personal computers didn’t have enough power. However, they generally lacked GUIs, which
made them harder to use and less versatile than they might have been.

Another element in the computing picture was also developing in the 1970s and 1980s. This was widespread inter-
computer communication. The idea of the local area networks (LAN), which was a room-to-room and building-to-
building communication network, was created and implemented. A particularly popular LAN was, and is today, the
Xerox-created Ethernet. This LAN is simply a cable connecting computers, whereby the computers can request and
send just about any kind of data, often organized as files.

Another computing environment element was the development and distribution of a general purpose operating system
that was platform independent, the UNIX system developed in the 1970s and 1980s at AT&T’s Bell Labs. This oper-
ating system was distributed freely to many college campuses, and the University of California at Berkeley developed
many extensions to UNIX, among them sockets which provide efficient communication over LANs. Today, the UNIX
operating system is offered commercially by AT&T as UNIX System V.

To complete the computer environment picture of the 1980s and 1990s, engineers at the Massachusetts Institute of
Technology created the X Window System, often called just “X.” This GUI and underlying software was designed for
powerful workstations with graphics-oriented hardware architecture. These capabilities are now available on high-end
PCs as well. It is also designed for computers that make heavy use of a LAN. Though not limited to the UNIX operating
system, the X Window System was first developed on UNIX computers.

2.10.7 Working with the GUI

This section describes how to accomplish basic tasks in the GUI version of IPF. After reading through this chapter, you
should be able to use the Concepts and Commands section to figure out and work with the rest of IPF’s features.

The material in this section is not written as a complete, start-to-finish tutorial. Rather, the material is organized by
individual task. However, the various topics are organized so that they reflect the common order of tasks in a typical
session. So, you can either read the topics and do the steps within the topics in the order presented, or you can skip
around and try out specific topics as they interest you.

Note: Most of the task procedures in this chapter involve using the mouse and its buttons. When you are asked to use
a mouse button, the left-hand button is meant unless you are explicitly directed otherwise.

The main menus and toolbox are the keys to IPF’s main functions. The main menus contain commands that allow
you to open files, save files, print network diagrams, solve cases, get help, edit bus and branch data, and so forth. The

232 Chapter 2. Contents



Interactive Power Flow

toolbox contains icon buttons that move you into and out of various display modes. They allow you to create new buses,
move buses, bend branches, reduce or enlarge the display, modify bus or branch data, and so forth.

The Display Mode buttons determine whether the map shows the intersection of the currently loaded base case file and
the currently loaded coordinate file, or everything in the coordinated file. The current files area tells you which files
you currently have loaded. The branch color key indicates the base kV rating of branches shown on the display, or their
overload status.

In a prototypical session, you would generally follow this scenario:

1. Load a solved system and/or a network data file, and a coordinate file via the main menu Files - Open command.

2. Make changes to the system and/or coordinate file data using the various toolbox icon buttons, which allow direct
on-screen manipulation of bus icons and branches, or bring up dialog boxes for adding data to bus and branch
records.

3. Solve the new case with the main menu Process - Solve command.

4. Save your new case including its solution data with the main menu Files - Save command.

5. Print out a network diagram with the main menu Files - Print Plot command.

You might also do the following:

• Run a CFLOW program with the main menu Process - Auto CFLOW command.

• Get some help along the way with the main menu Help command.

2.10.8 Starting IPF

IPF is an X Window System application and is started like any other X application. However, your underlying operating
system and the window manager you are running offer some ways to simplify how you start up IPF. Essentially, there
are three ways you can start up IPF:

• You type the IPF command name gui in a terminal emulation window.

• You select IPF on your window manager’s “run applications” menu. Generally, this involves clicking a mouse
button on the background to bring up the “run applications” menu.

• You find that IPF is started automatically when you log in to your account. This means the system administrator
has already set up your account to do this. You should see IPF as an icon or open window after the login process
is complete.

To start IPF from an X terminal emulator window:

1. Make sure the X Window System and your window manager are running. Consult with your system administrator
if you don’t have X running.

2. Find a terminal emulator window or open one from a window manager menu.

3. In the terminal emulator window, enter gui. Within a minute or less, depending on the performance of your
computer system, you should see the IPF main window appear.

2.10. X Window Graphical Interface (gui) 233



Interactive Power Flow

Fig. 2.10.6: Main Window

234 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.7: Toolbox Icons

2.10. X Window Graphical Interface (gui) 235



Interactive Power Flow

2.10.9 Exiting IPF

When you are through editing the currently loaded base case or coordinate files, running a solution, etc., and have saved
your work, choose the Exit command from the File menu.

1. Click the File menu and select the Exit command. You will see the Exit dialog box come up. Do not use the
window menu button (upper left) to close the IPF window.

2. Click OK if you are sure you want to exit IPF. Click Cancel if you have changed your mind and want to keep IPF
running. If you select OK, IPF closes all its windows and removes them from the screen. You will still be in the
X Window System, and you can proceed to any icon or open window to continue working with other X clients.
If, after exiting IPF, you decide to run IPF again, see Starting IPF, above.

2.10.10 Opening Files

The Open dialog box shows you the five kinds of files you can open in IPF: the command, change, base case, network
data, and coordinate files. See the figure below. For detailed information about these files, see Powerflow Command
Language (PCL) and Record Formats.

For most power flow studies, the base case (binary) coordinate files are used. However, network data files must be used
to initially create a binary base case file. Change files are used to make changes to a base case file; this case is called
a change case, and the results are typically saved as a new base case file. Command files are Powerflow Command
Language (PCL).

Unlike the command, change, network data, and coordinate files, which are ASCII text files, the base case file is a
binary memory image file. The base case file contains only power system data, which is edited within IPF, whereas the
command, change, and network data files may be editedoutside IPF using any ASCII text editor.

The coordinate file is a combination of bus position and branch bending point data in addition to plotting data. The
coordinate file bus position and branch bending point locations can be altered by moving them in the GUI display, and
a new coordinate file saved if desired. The plotting data can also be edited outside of IPF with an ASCII text editor.

Displaying a Network File

Normally, you will want to load a coordinate file in addition to the network data or base case file you intend to work
on. If you do not, you will not be able to display the system graphically in the IPF main window. A system data file
needs coordinate position information to display itself in IPF. It must get this information from a coordinate file since
it does not have this information within itself. However, if all you want to do is edit a coordinate file, you can load just
that file, and it will display properly in the main window.

If you load only a system data file, you can use only the textual editing and report capabilities of IPF to see your data,
but you can still solve, make changes, save cases, etc. Also, you can generate a network diagram on the fly from which
you can graphically navigate or display results. See Exploring Base Case Connectivity.

To open a network le:

1. Choose Open from the file menu in the IPF main window. You will see the Open dialog box as shown in Figure
3-3.

2. Find Network Data File at the left of the dialog box. The button, information box, and file text boxes under the
heading allow you to select a network data file. The file text box under the Select button holds a file selection
string. The string displayed when you first open the Open dialog box comes from a default that you can set in
your XGUI file. See Appendix A, Customizing IPF.

3. Click the Select button. Notice that the file selection string is transferred to the Filter file text box at the right.
Also, the Files list changed to reflect the Filter criteria.

4. Scroll the Files list to find the file you want to load.

236 Chapter 2. Contents



Interactive Power Flow

5. Select the file by clicking it. This action puts the selected file in the Selection file text box below the Files list.

6. Click the Apply button to put the file name you have selected in the Network Data File file text box at the left
side of the Open dialog box.

7. Click the Load Selections button at the bottom of the left side of the Open box. This final action actually loads
the selected file into IPF’s memory.

Since step 7 causes the open files dialog to close, it is best to perform steps 1 to 6 for each of the different kinds of files
you want to load, and then click Load Selections at the end to load all files at one time. Note that you cannot open a
network and a base file. Only the last one you picked will be loaded.

To open a command, change, base case, or coordinate le:

To open these files, perform the steps above. All of the essentials are similar; only the file type is different.

2.10.11 Saving Files

You can save five kinds of files in the X Window GUI: change files, base case files, network files, coordinate, and
stability interface files. Ordinarily, you save files after you are done with a work session, but you can save a file at any
time. Change, network, and coordinate files are saved in ASCII text format. Base case files are saved in binary format.
Stability interface files can be saved in either binary or ASCII format. In a binary file, a memory image of base case
data is written out to a file. See Overview for more information about these files.

To save a le:

1. Choose Save from the File menu in the main IPF window. You will see the Save dialog box as shown in the figure
below.

2. Change the name of the file you are saving if you do not want to overwrite an existing file.

3. Click the appropriate Save button to save the desired file.

4. If the file you are trying to save has the same name as an existing file, you are presented with the Overwrite
warning dialog box. You can choose Overwrite to complete the save or Cancel to cancel the save. Note only one
base per file is allowed.

2.10.12 Changing the Displayed Network Size

You can use the X Window scroll bars on the right and bottom edges of the network display window to see a different
chunk of the network diagram. The X Window GUI also includes an enlarge (and reduce) displayed network feature.
Two buttons in the toolbox control this. X Window GUI has three displayed network size options. When you first load a
base case or coordinate file, the middle size is chosen by IPF. If you find you would like to see more detail in a network
diagram, you choose the Enlarge button. If, on the other hand, you would like to see the overall picture, you choose the
Reduce button. The Enlarge button doubles the displayed network size, and the Reduce button halves the image size.

All other toolbox operations work no matter what the network size is, so you are free to work with the size that best
suits the task at hand.

To alter the displayed network size:

1. Make sure you have a coordinate file loaded. See Opening Files to find out how to do this.

2. Click the Enlarge button in the toolbox in the main window. This magnifies the displayed network by two times.
Note that you are now at the top magnification, 2.0.

3. Click the Reduce button. The displayed network returns to its original size (1.0), which is the size created by
an Open operation. Click the Reduce button again. The displayed network size decreases by half. This is the
smallest size, 0.5.

2.10. X Window Graphical Interface (gui) 237



Interactive Power Flow

Fig. 2.10.8: Saving a File

Fig. 2.10.9: Displayed Network Sizes

238 Chapter 2. Contents



Interactive Power Flow

2.10.13 Editing Base Case Data

Editing a base case file is one of the primary activities in the X Window GUI. This involves a number of tasks: adding
new buses or branches, modifying existing bus or branch values, and deleting existing buses or branches. These tasks
are all accomplished in the main window toolbox and display area.

Adding a Bus and Related Components

You can add a bus to a resident base case or to IPF itself with no base case loaded. The procedure is the same for both.
Adding a bus means in effect to create a new bus record within IPF’s memory. You can add as many as you want up to
IPF’s maximum limit. Bus-related components are such items as continuation, transformer, line, and Q records. The
method of adding these components is very similar to adding a bus record.

To add a bus:

1. Make sure you have a base case loaded if you want to add a bus to an existing base case file. See Opening Files
to find out how to do this.

2. Click the New Bus icon in the toolbox in the main window. This puts you in the Add Bus mode and brings up
the Bus Input Data dialog with a dummy bus name. Change this to whatever you want, and add data.

3. Move into the display area where you will note that the cursor changes to a box to remind you that you are in
New Bus mode. Click anywhere in the display area. Note that a bus icon with an the new name appears at the
point where you clicked.

Modifying a Bus

Modifying a bus means to alter any of its associated values as they exist in the currently loaded base case data. This
is done through the Input Data Edit Box. Refer to Bus and Branch Editing to find out more about the Input Data Edit
Box.

To modify a bus:

1. Make sure you have system data loaded. See Opening Files to find out how to do this.

2. Click the Input Data Edit button in the toolbox. You are now in Input Data Edit mode.

3. Find a bus you want to modify, move the cursor over the bus, and click the left mouse button. The Input Data
Edit Box appears with data text boxes filled with the values associated with the bus you clicked.

4. Change any of the values to new ones or type new values in blank text boxes. See the Record Formats for
information on models and values. When you have values correctly typed (there is some data entry checking),
click the Apply button at the bottom of the box to modify the bus data in the resident base case data.

Adding a Branch

You can add a branch to a resident base case. Adding a branch means to create a new connection between existing
buses, which adds a new branch record within IPF’s data structure. You can add as many as you want up to IPF’s
maximum limit. Branches are always associated with their terminating buses, so you access branches through buses.

To add a branch:

1. Make sure you have system data loaded. See Opening Files to find out how to do this.

2. Click the New Branch icon in the toolbox in the main window. This puts you in the Add Branch mode.

2.10. X Window Graphical Interface (gui) 239



Interactive Power Flow

3. Move into the display area where you will note that the cursor changes to a right pointing arrow. Click the first
bus that you want to connect the branch to. Move to the second bus that you want the branch to connect to and
click on it. A line appears on the display connecting the two bus icons. Also, the Input Data Edit Box appears.

4. Fill in the values for the new branch as appropriate. See Record Formats for more information.

5. Click the Add button to add the new branch record to the currently resident base case data.

Modifying a Branch

Modifying a branch means to alter any of its associated values as they exist in the currently loaded base case data. This
is done through the Input Data Edit Box. Refer to Bus and Branch Editing to find out more about the Input Data Edit
Box.

To modify a branch:

1. Make sure you have system data loaded. See Opening Files to find out how to do this.

2. Click the Input Data Edit button in the toolbox. You are now in Input Data Edit mode.

3. Find a bus that is connected to the branch you want to modify, move the cursor over the bus, and click the left
mouse button. The Input Data Edit Box appears with data text boxes filled with the values associated with the
bus you clicked. But you want a branch.

4. Find the option menu button (labeled “Bus”) at the upper right of the dialog box. This menu contains records
associated with the currently selected bus. You will find continuation, transformer, branch, and other records on
this menu.

5. Press this option button to show the associated items. Drag down to the branch record of your choice and release
the mouse button. Note that the Input Data Edit Box now reflects data associated with the branch you chose.

6. Change any of the text box data to new values. When you have values correctly typed (there is some data entry
checking), click the Apply button at the bottom of the box to modify the branch data in the resident base case
data.

Adding, Modifying, or Deleting an Area or Intertie

For area or intertie studies, you can add, modify, or delete areas or interties, by using the main window Edit -
Area/Interchange command. You can do this at any time. See figures below.

Fig. 2.10.10: Area Intertie Selection Dialog Box

To add an area:

1. Click Area/Interchange on the Edit menu in main window. The Area/Intertie Selection dialog box appears.

240 Chapter 2. Contents



Interactive Power Flow

2. Click the Create New button. A small box appears, asking whether you want to create an Area Control (A) record
or an Intertie (I) record. Click Area Control.

3. The Area/Interchange dialog box appears. Fill in the required text boxes.

4. Click the Add button at the bottom. The Area/Interchange dialog box closes and the new data you typed into the
Area/Intertie dialog box now appears in the Area/Intertie Selection dialog box.

Fig. 2.10.11: Area Interchange Dialog Box

To modify an area intertie:

1. Click Area/Interchange on the Edit menu in the main window. The Area/Intertie Selection dialog box appears.

2. Select an item in the list window by clicking it. This action puts the selected item in the Selection text box.

3. Click the Edit Area/Intertie button. The Area/Interchange dialog box appears.

4. Change the data in the text boxes.

5. Click the Modify button. The Area/Interchange dialog box closes and the new data you typed into the
Area/Intertie dialog box now appears in the Area/Intertie Selection dialog box.

To delete an area:

1. Click Area/Interchange on the Edit menu in main window. The Area/Intertie Selection dialog box appears.

2. Select an item in the list window by clicking it. This action puts the selected item in the Selection text box.

3. Click the Edit Area/Intertie button. The Area/Interchange dialog box appears.

4. Click the Delete button.

To create an area continuation record:

1. Click Area/Interchange on the Edit menu in the main window. The Area/Intertie Selection dialog box appears.

2.10. X Window Graphical Interface (gui) 241



Interactive Power Flow

2. Select an item in the list window by clicking it. This action puts the selected item in the Selection text box.

3. Click the Edit Area/Intertie button. The Area/Interchange dialog box appears.

4. Change the data in the text boxes if you need to.

5. Click the Create Area Continuation Card button. The dialog box appears.

6. Add zone data to the Zone text boxes.

7. Click the Add button. The Area/Interchange dialog box closes and the new data you typed into the Area/Intertie
dialog box now appears in the Area/Intertie Selection dialog box.

Fig. 2.10.12: Area Continuation Card Dialog Box

Exploring Base Case Connectivity

Sometimes you may want to explode a portion of a large network to see how buses are locally interconnected. The idea
is that you start with one bus on the display and find out what other buses are connected to it. Then, with each of these
buses, you find out what buses are connected to these, and so on.

The Explode icon in the toolbox allows you to explore base case connectivity.

To explore a base case:

1. Load just a base case file to demonstrate this function. See Opening Files to find out how to do this.

2. Click the New Bus icon in the toolbox to enter Add Bus mode. The Input Data Edit box will come up; just close
it without entering any data.

3. Select Alpha Search on the View menu. In the Alpha Search dialog box, type the first few letters of a bus name.
The alphabetical list automatically scrolls to find the bus of interest in the list. See the Alpha Search command
entry in Chapter 4 for more information.

4. Click the bus name of interest. It may already be highlighted, but you must click on it to make it the currently
selected bus.

5. Move to the blank display area. (You should still be in Add Bus mode.) Click once to make the bus icon and
name appear.

242 Chapter 2. Contents



Interactive Power Flow

6. Move back to the toolbox and click the Explode icon. You previously established a bus that you can now explore
bus connectivity with.

7. Click the bus. You will note that any buses that are connected to your bus of interest are now shown on the
display with connecting lines representing branches. You can continue exploring the network by clicking any
new buses that show up. You can reveal the entire network in this way if you like (although it will probably look
like a mess!)

The buses and branches are positioned by an internal algorithm since you have not loaded any underlying coordinate
data. You can click the Move icon and then move the buses around the screen if you want to clean things up.

Sectionalizing a Bus

Sectionalizing a bus separates a bus into two buses and rearranges its branches between the two buses. You can also
optionally create a tie line between the two buses. See figure below.

To sectionalize a bus:

1. Make sure you have system data loaded. See Opening Files to find out how to do this.

2. Click the Input Data Edit mode button in the toolbox. You are now in Input Data Edit mode.

3. Select a bus by clicking it. This brings up the Input Data Edit Box. At the center bottom of the dialog box is the
Sectionalize button. Click it to cause the Bus Sectionalize dialog box to appear. Note that the bus name of the
currently selected bus appears in two places.

4. Type a new bus name over the existing Bus 2 name to create a new bus.

5. Click any branch, transformer, etc., record in the left-hand scrolling text box to transfer it to the right-hand
scrolling text box. Note that you can go back and forth by clicking the appropriate records till branches, trans-
formers, etc., are all associated with the bus you want.

6. Click the OK button to send the sectionalized bus data to the resident base case data. If IPF detects any errors or
inconsistencies, it puts up the Error dialog box. Examination of the message helps you figure out the problem.

Note: If the name you type is not accepted, IPF has found it to be a duplicate name and rejects it. If, at any point, you
would like to start from the beginning, just press Reset at any time. This returns all values to the state they were at the
time the dialog box first opened.

7. Sometimes you may want to connect the old and new buses making up the sectionalized bus. Click on the Bus
Tie button to create a line with impedance of 0.0 + j0.00001. You may modify this line later, if you wish

Tapping a Line

Tapping a line means to service a new load by creating a new tap point bus on an existing line. The tapped line is
effectively segmented into two lines, separated with a newly created bus. If the load is remote from the tapped point,
an additional line and bus will be necessary. The new load and the new bus are connected by a new line. As with many
line operations, you access line tapping through a bus that the line is connected to.

To tap a line:

1. Make sure you have system data loaded. See Opening Files to find out how to do this.

2. Click the Input Data Edit mode button in the toolbox.

3. Click a bus icon that is connected to the line you want to tap. This brings up the Input Data Edit Box which is
loaded with input data pertaining to the selected bus. Click and hold the option button opposite the bus name at
the top of the Input Data Edit Box. The cascading menu lists all branches connected to the current bus. Drag

2.10. X Window Graphical Interface (gui) 243



Interactive Power Flow

Fig. 2.10.13: Sectionalize Operation Completed

down to the line you are interested in tapping. Be sure that this is a line and not a transformer. Selecting this
item brings up the Input Data Edit Box for your line of interest. Near the center bottom of this dialog box is the
Tap Line button. Click it to cause the Tap Line dialog box to appear.

4. Initially the dialog box displays data from a previous invocation. If this is the first time it is displayed, all fields
are blank. Enter the name of the bus you want to create in the dialog field Tapped Bus Name and press the Apply
button. The selected line is tapped at the point depicting 50% of the total line’s reactance. You can horizontally
scroll the line data within the Bus 1 side and the Bus 2 side to verify that the line resistance and reactance is split
according to the sliding scale selected. Pressing the Apply button recomputes the line impedance on each side
of the tapped bus without affecting any data in the Powerflow base case.

5. Change the units (Percentage, Miles, Kilometers, or Section) to reflect your tapping criteria. Adjust the horizontal
slider as necessary. Move the slider by moving the mouse cursor over it, pressing the left mouse button, and
moving left or right till you find the point of the line you want to tap. Release the mouse button.The line tapping
slider just above the Reverse Scale button shows the tap point according to the tapping criteria (length of the line
in kilometers or miles, or percent of reactance). The line tapping slider also shows any sections the line may be
divided into. Again press Apply to update the line’s impedance to reflect the slider’s current value.

6. If the values are acceptable, click OK to export these changes to Powerflow.

7. Click Close to cause the dialog box to disappear.

244 Chapter 2. Contents



Interactive Power Flow

2.10.14 Solving a Network Case

Solving a network case (or base case) causes IPF to calculate bus voltages that satisfy the network constraints as they
exist within the currently resident base case data. This is usually done after you have loaded a base case and made
some modifications to reflect the conditions of the system you want to study. However, you may solve as soon as you
have loaded any system data. You do not need to load a coordinate or change file to solve a case. See figure below for
a typical display after a case solution.

Fig. 2.10.14: Network Display After Solution

To solve a base case:

1. Make sure that you have previously loaded a base case or netdata file. See Opening Files if you have not.

2. Choose Solve Case from the Process menu in the IPF main window. The Solve dialog box opens and you are
presented with a number of options. See the figure below. Note that default values are set for you. If these suit
your case, click the Solve button. If the defaults are not appropriate for your case, change them. Then solve the
case. See Chapter 4 for a discussion of the options.

The solution may take anywhere from a few seconds to minutes depending on the number of buses in the base case.
After the solution is complete, the display shows some of the calculated data.

2.10. X Window Graphical Interface (gui) 245



Interactive Power Flow

2.10.15 Bus and Branch Editing

Bus and branch data editing are most often accomplished through the Input Data Edit Box. This dialog box is brought
up on the display whenever you click a bus displayed in the main window. The specific data associated with the bus
you click fills the text boxes of the Input Data Edit Box. You can change any of the values to new values. You can then
store the changed data in the memory-resident bus and branch database, solve the case with the new data values, and
optionally save the changes permanently in a file.

Note: See the Network Data Edit menu item entry in this chapter for another way to edit bus and branch data.

Each of the text box fields in a given instance of the Input Data Edit Box corresponds to a record field for a bus, line,
or transformer type as documented in the Record Formats section. If you are unsure of the meaning of the fields for a
particular bus, line, or transformer type, look it up in that section.

In the Record Formats section, field width, decimal point placement, and sign are specified for each field. Real number
fields have a position where a decimal point is implied, i.e. as long as you correctly position your digits, you need not
enter a decimal point a a .pfc file or NETWORK_DATA file. However, in the Input Data Edit Box you should always
enter a decimal point. Sufficient room has been allowed for this in each field. The GUI will format your data correctly
so it fits the field on a standard input record.

When you enter data into the Input Data Edit Box text boxes, the GUI checks to see whether you have entered values
correctly. Specifically, it checks for all characters being numeric, having a minus sign (in the proper place), or having
a decimal point (period). All other characters are rejected and a warning bell sounds. Other basic checks for valid data
are also operating in during data entry. However, it may still be possible to enter invalid data that only shows up when
a power flow solution is attempted.

Bus Editing

Bus input data dialogs are accessed directly by clicking on a bus icon in the display, or by selecting a bus name on the
Alpha List. Their appearance varies according to the type of the bus. To change the bus type of a bus, click the button
labeled Type, near the Owner and Zone fields. This option button pops up a menu showing all the bus types accepted
by IPF. If you click on a different type than was originally displayed, the dialog will change into one appropriate to that
bus type. If you click the Modify button, the bus will be changed to a different type. You may have to supply more (or
different) data in other fields in order for the change to be legal.

Branch and Other Component Editing

You cannot select a branch directly. Branch data is accessed by selecting a bus that is connected to the line or transformer
you want to edit. Then, once the Input Data Edit Box shows a bus connected to your line of interest, you pick the line
by using the option button labeled Bus, in the upper right corner of the box. Press and drag down to select the one you
want. The dialog box changes to reflect the fields and parameters characteristic of lines.

The Bus option menu also contains other bus-related components, or records, such as switched reactance (X) data, bus
continuation data, PQ curves, etc. Drag down and release to select any of these you want to edit.

246 Chapter 2. Contents



Interactive Power Flow

Adding New Components

New buses are added by using the New Bus tool in the main menu toolbox. See Adding a Bus and Related Components
for details on this process. New branches can be added only if both terminal buses exist. You can add branches
graphically by using the New Branch tool, or by going through the Input Data Edit Box for one of the terminal buses.
Other bus-related components can only be added through the dialog box. To add components to a bus, press the option
button labeled New Component and drag down to the desired item. Items which are grayed out are not appropriate for
this type of bus. For example, switched reactance (X) data can only be added to a BX type bus.

When you release the mouse button, the data dialog for the selected item will appear. You fill in the desired data fields,
and click the Add button at the bottom to add it to the currently resident base case data. Notice that the Modify button
is grayed out on this dialog.

2.10.16 Input Data Edit Dialog Boxes

The following dialog boxes are all accessed from the Input Data Edit Dialog Box. The dialog boxes are arranged with
buses first and branch components last.

Table 2.10.1: Input Data Edit Dialog Boxes
Dialog Box Description
B-BLANK BUS Adds bus data for modeling load bus.
BC BUS Adds bus data for a bus controlled by a BG bus.
BD BUS Supplies data for a two terminal dc bus.
BE BUS Adds bus data for a bus that holds its voltage to a specified value.
BF BUS Supplies data for a special-purpose bus for the NewtonRaphson solution method.
BG BUS Adds bus data for a bus that controls the voltage of a remote BC bus.
BM BUS Supplies data for a multi-terminal dc bus.
BQ BUS Adds bus data for a bus that holds its voltage to a specified value within reactive

limits.
BS BUS Adds bus data for the slack (or swing) bus.
BT BUS Adds bus data for a bus that maintains its voltage with an LTC transformer.
BV BUS Adds bus data for a bus that holds its net reactive power within a user-specified

voltage range.
BX BUS Adds bus data for a bus that controls its local voltage by switching capaci-

tors/reactors in and out.
CONTINUATION BUS Adds additional data to an existing bus record.
SWITCHED REACTANCE Adds data for voltage controlled shunt device installations.
PQ CURVE Adds PQ curve data for calculation of Q limits.
SECTIONALIZATION Provides for the sectionalization of a bus.
LINE TAPPING (Not yet available) Provides for tapping of lines.
TRANSMISSION LINE Adds data for a balanced transmission line.
PHASE SHIFTER Adds data for phase shifting transformers.
TRANSFORMER Adds data for two-winding transformers.
REGULATING TRANS-
FORMER

Adds data to give fixed transformers or phase shifters automatic regulating or con-
trol status.

EQUIVALENT NETWORK Adds data for an asymmetrical pi type line.

2.10. X Window Graphical Interface (gui) 247



Interactive Power Flow

2.10.17 AC Bus Input Data Boxes

This box will look slightly different, depending on the bus type. All of the AC bus data fields are described below;
specific differences are covered under the various bus types. You must click separately in each field that you want to
alter. Text entry is always in Insert mode, meaning that you cannot type over a character or number; you must delete it
first. Note that when a field is described as a “real number,” you should always enter a decimal point. See below for an
example of a typical bus input data dialog box.

Name. An eight character maximum, alphanumeric string designating a bus name. The string must start with an alpha
character. The name should be unique. This name is placed in the first text box from the left. The right text box should
have a five character maximum numeric string representing the bus’s base kV rating.

Bus. An option button that allows you access to other records that are associated with the currently displayed bus.
Press on this button and drag down to select an existing branch or other component. The dialog box transforms into
the dialog for the selected component.

Owner. Three character maximum, alphanumeric string designating a bus owner.

Zone. Two character maximum, alphanumeric string designating the zone the bus is in.

Type. An option button that changes the dialog box to reflect different bus types. The types are: B `` (B-blank),
``BC, BE, BF, BG, BQ, BS, BT, BV, and BX. You cannot change an AC bus into a DC bus using this button.

Load P. Five character maximum, real number designating real load in megawatts (MW).

Load Q. Five character maximum, real number designating reactive load in megavoltamperes reactive (MVAR).

Shunt P. Four character maximum, real number designating the shunt admittance load in megawatts (MW) at the base
kV of the bus.

Shunt Q. Four character maximum, real number designating shunt admittance in megavoltamperes reactive (MVAR).
A positive value is capacitive; a negative value is inductive. The minus sign goes in front of the number.

P Max. Four character maximum, real number designating the maximum real power generation in megawatts (MW).

P Gen. Five character maximum, real number designating scheduled real power generation in megawatts (MW).

Q Sched. Five character maximum, real number designating scheduled reactive power in megavoltamperes reactive
(MVAR). May be positive or negative.

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(MVAR). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(MVAR). Generally negative. The minus sign goes in front of the number.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

V Max. Four character maximum, real number designating a maximum voltage limit in per unit.

V Min. Four character maximum, real number designating a minimum voltage limit in per unit.

Sectionalize. A button that brings up the Sectionalize dialog box. See Sectionalize Dialog Box in this section.

New Component. A tag for the option button that allows you to add a new bus-related component such as a branch, X
data, etc. Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box displays to their original values (before any changes were made).

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

248 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.15: Input Data Edit Box Showing B-Blank Bus Data.png
2.10. X Window Graphical Interface (gui) 249



Interactive Power Flow

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

B-Blank Bus

The B-blank dialog box supplies data for modeling the typical load bus. See the B-blank record in AC Bus Data (B-
blank).

V Max. Four character maximum, real number designating a maximum voltage limit in per unit.

V Min. Four character maximum, real number designating a minimum voltage limit in per unit.

The voltage limit fields take effect only if the voltage of the B-blank bus is being controlled by a remote device.

BC Bus

The BC dialog box supplies data for a bus controlled by one or more BG type buses. See the BC record in AC Bus Data
(BC).

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

BE Bus

The BE dialog box supplies data for a bus that holds its voltage to a specified value. See the BE record in AC Bus Data
(BE).

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(MVAR). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(MVAR). Generally negative. The minus sign goes in front of the number.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

BF Bus

The BF dialog box supplies data for a special-purpose bus for the Newton-Raphson solution method. It holds the
specified voltage until the P-solution has converged, then acts like an ordinary load bus (B-blank). See the BF record in
AC Bus Data (BF).

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(Mvar). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(Mvar). Generally negative. The minus sign goes in front of the number.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

250 Chapter 2. Contents



Interactive Power Flow

BG Bus

The BG dialog box supplies data for a bus that controls the voltage of a remote BC bus. See the BG record in ac-bus-
data-bg.

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(MVAR). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(MVAR). Generally negative. The minus sign goes in front of the number.

V Max. Four character maximum, real number designating a maximum voltage limit in per unit.

V Min. Four character maximum, real number designating a minimum voltage limit in per unit

Remote Bus. An eight character maximum, alphanumeric string designating the remote bus to be voltage controlled
(a BC type bus).

PCS. A three character maximum, numeric string designating the percentage of VARS supplied by this bus to control
the remote bus voltage.

BQ Bus

The BQ dialog box supplies data for a bus that holds its voltage to a specified value within reactive limits. See the BQ
record in AC Bus Data (BQ).

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(MVAR). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(MVAR). Generally negative. The minus sign goes in front of the number.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

BS Bus

The BS dialog box supplies data for the system slack (or swing) bus. See the BS record in AC Bus Data (BS).

Q Sched. Five character maximum, real number designating scheduled reactive power in megavoltamperes reactive
(MVAR). May be positive or negative.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

Angle. Four character maximum, real number designating a voltage phase angle in degrees. Blank is translated to an
angle of zero.

BT Bus

The BT dialog box supplies data for a bus that maintains its voltage with an LTC transformer. See the BT record in AC
Bus Data (BT).

Q Sched. Five character maximum, real number designating scheduled reactive power in megavoltamperes reactive
(MVAR). May be positive or negative.

V Hold. Four character maximum, real number designating a voltage to hold for the bus, in per unit.

2.10. X Window Graphical Interface (gui) 251



Interactive Power Flow

BV Bus

The BV dialog box supplies data for a bus that holds its net reactive power within a user-specified voltage range. See
the BV record in AC Bus Data (BV).

Q Sched. Five character maximum, real number designating scheduled reactive power in megavoltamperes reactive
(MVAR). May be positive or negative.

V Max. Four character maximum, real number designating a maximum voltage limit in per unit.

V Min. Four character maximum, real number designating a minimum voltage limit in per unit.

BX Bus

The BX dialog box supplies data for a bus that controls its own or a remote bus’s voltage by switching capacitors or
reactors in and out. See the BX record in AC Bus Data (BX).

Q Max. Five character maximum, real number designating maximum reactive power in megavoltamperes reactive
(MVAR). Generally positive.

Q Min. Five character maximum, real number designating minimum reactive power in megavoltamperes reactive
(MVAR). Generally negative. The minus sign goes in front of the number.

V Max. Four character maximum, real number designating a maximum voltage limit in per unit.

V Min. Four character maximum, real number designating a minimum voltage limit in per unit.

Remote Bus. An eight character maximum, alphanumeric string designating the remote bus to be voltage controlled.

2.10.18 BD Bus

The BD dialog box supplies data for a two-terminal DC bus. See the BD record two-terminal–dc-bus-data-bd.

Number of Bridges. Two digit integer designating the number of bridges per dc circuit (number of valves serially
connected).

Smoothing Reactor. Five character maximum, real number designating smoothing inductance in millihenries.

Min Firing Angle. Five character maximum, real number designating minimum firing angle (𝑎𝑙𝑝ℎ𝑎𝑚𝑖𝑛) in degrees,
for rectifier operation.

Max Firing Angle. Five character maximum, real number designating maximum firing angle (𝑎𝑙𝑝ℎ𝑎𝑠𝑡𝑜𝑝) in degrees,
for inverter operation.

Valve Drop. Five character maximum, real number designating valve voltage drop per bridge, in volts.

Bridge Rating. Five character maximum, real number designating maximum bridge current rating in amps.

Commutating Bus. Eight character maximum, alphanumeric string designating the commutating bus name. This is
the bus on the ac system side of the commutating transformer bank.

252 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.16: Input Data Edit Box Showing BD Bus

2.10. X Window Graphical Interface (gui) 253



Interactive Power Flow

2.10.19 BM Bus

The BM dialog box supplies data for a multi-terminal dc bus. See the BM record Multi-Terminal DC Bus (BM).

Number of Bridges. Two digit integer designating the number of bridges per dc circuit (number of converters serially
connected).

Smoothing Reactor. Five character maximum, real number designating smoothing inductance in millihenries.

Min Firing Angle. Five character maximum, real number designating minimum ignition delay angle (𝑎𝑙𝑝ℎ𝑎𝑚𝑖𝑛) in
degrees.

Max Firing Angle. Five character maximum, real number designating maximum ignition delay angle (𝑎𝑙𝑝ℎ𝑎𝑠𝑡𝑜𝑝) in
degrees.

Valve Drop. Five character maximum, real number designating converter valve drop per bridge, in volts.

Bridge Rating. Five character maximum, real number designating bridge current rating (maximum converter current)
in amps.

Commutating Bus. Eight character maximum, alphanumeric string designating the commutating bus name.

Converter Type. Single character alpha string designating the converter code. R indicates normal operation as a
rectifier; I is normal operation as an inverter. M indicates an inverter with current margin, and blank indicates a passive
dc tap.

Ignition Delay Angle. Three character maximum, real number designating the normal ignition delay angle (𝑎𝑙𝑝ℎ𝑎𝑁 )
for a rectifier, or normal extinction angle (𝑔𝑎𝑚𝑚𝑎𝑁 ) for an inverter, in degrees.

Min Extinction Angle. Three character maximum, real number designating the minimum ignition angle (𝑎𝑙𝑝ℎ𝑎𝑚𝑖𝑛)
for a rectifier, or minimum extinction angle (𝑔𝑎𝑚𝑚𝑎0) for an inverter, in degrees.

Converter DC Power. Six character maximum, real number designating the scheduled dc bus load (net converter dc
output power) in megawatts (MW) at the base kV of the bus.

Converter DC Voltage. Five character maximum, real number designating the scheduled dc bus kV (converter dc
voltage).

2.10.20 Continuation Bus

The continuation bus dialog box is used for extending the data for a given bus record. You can specify additional
generation, load, and shunt admittance. A typical use is the case where several owners have load at the same bus. Also,
shunt specified on this record is considered to be fixed, rather than variable. See the +` (plus) record Continuation Bus
Data (+).

Name. An eight character maximum, alphanumeric string, plus a five character maximum real number, designating
the name of the bus that this continuation data is associated with. Code Type. An option button that specifies the type
of continuation record: +blank, +A, +C, +F +I, +N, +P, or +S. See the IPF Batch User’s Guide for an explanation of
these codes.

Owner. Three character maximum, alphanumeric string designating the owner of this particular load, shunt, etc. This
will usually be different from the owner of the bus itself.

Code Year. Two character maximum, alphanumeric string. See Continuation Bus Data (+). for details.

Load P. Five character maximum, real number designating real load in megawatts (MW).

Load Q. Five character maximum, real number designating reactive load in megavoltamperes reactive (Mvar).

Shunt P. Four character maximum, real number designating the shunt admittance load in megawatts (MW) at the base
kV of the bus.

254 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.17: Input Data Edit Box Showing BM Bus

2.10. X Window Graphical Interface (gui) 255



Interactive Power Flow

Fig. 2.10.18: Continuation Bus Dialog Box

256 Chapter 2. Contents



Interactive Power Flow

Shunt Q. Four character maximum, real number designating the shunt reactance load in megavoltamperes reactive
(MVar) at the base kV of the bus.

Gen P. Five character maximum, real number designating scheduled real power in megawatts (MW) as a real number.

Gen Qmax. Five character maximum, real number designating maximum reactive power in megawatts (MW).

Gen Qmin. Five character maximum, real number designating minimum reactive power in megawatts (MW).

2.10.21 Switched Reactance

The switched reactance bus dialog box is used for specifying steps in a switched reactance BX bus. See the X record
Switched Reactance (X) for detailed information.

Name. An eight character maximum, alphanumeric string, plus a five character maximum real number, designating
the name of the BX bus that this data is associated with.

Remote Bus. An eight character maximum, alphanumeric string, plus a five character maximum real number, desig-
nating the name of the remote bus to be voltage controlled.

Owner. A three character maximum, alphanumeric string designating the bus owner.

Steps. An integer from 1 to 9, designating the number of increments of shunt of this magnitude.

MVAR. A five character maximum, real number designating a block of switchable reactive shunt in megavoltamperes
reactive (Mvar).

2.10.22 PQ Curve

The PQ Curve dialog box allows you to specify points for a generator reactive capability curve for a type BE, BG, BQ,
BX, or BS bus. See the QP` record Reactive Capability Curves (QP, QX, QN) for detailed information.

To specify P Gen, Q Max, and Q Min values, type the values in the bottom text entry boxes. Click the Insert button to
transfer the values from the text entry boxes to the list boxes above. Rows of values are associated across. Six rows of
values are sufficient for most curves. Once you have values typed in and entered, you can replace or delete them, a row
at a time.

P Gen. Five character maximum, real number designating a particular level of real power generation in megawatts
(MW) which is to be associated with certain Q limits. Values may be specified in per unit on Pmax, or in MVA. All
values for a curve must be specified the same way.

Q Max. Five character maximum, real number designating maximum reactive power (positive) in megavoltamperes
reactive (Mvar) that can be produced by the generator when operating at this level of real power output. Values may be
specified in per unit on Pmax, or in MVA. All values for a curve must be specified the same way.

Q Min. Five character maximum, real number designating minimum reactive power (negative) in megavoltamperes
reactive (Mvar) that can be absorbed by the generator when operating at this level of real power output. Values may be
specified in per unit on Pmax, or in MVA. All values for a curve must be specified the same way.

Insert. A button that inserts the values in the bottom text entry boxes into the text lists above. Replace. A button that
replaces the selected row of values in the list above with the current values in the bottom text entry boxes.

Delete. A button that deletes the selected text list row of values.

Active. A radio button that makes the curve defined by the values in the text list rows active, that is, IPF uses the curve
to determine what the Q limits will be, based on the current level of Pgen specified in the bus record.

Inactive. A radio button that makes the curve inactive, that is, IPF does not calculate new Q limits whenever Pgen is
changed, but uses whatever it currently has stored.

2.10. X Window Graphical Interface (gui) 257



Interactive Power Flow

Fig. 2.10.19: Switched Reactance Dialog Box

258 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.20: P-Q Generation Dialog Box

2.10. X Window Graphical Interface (gui) 259



Interactive Power Flow

MVA. The values for the PQ curves may be specified in MVA or per unit. Clicking the MVA radio button tells the
program to expect values in MVA.

Per Unit. The values for the PQ curves may be specified in MVA or per unit. Clicking the Per Unit radio button tells
the program to expect values in per unit on Pmax.

Add. A button that adds a new three-record point set to the current curve data for this bus.

Modify. A button that modifies the curve data. (Not available.)

Reset. A button that restores text box values to their original values (before any changes were made).

Delete. A button that deletes (removes) the curve data from the database.

Outage. (Not applicable.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications.

2.10.23 Sectionalization

The Sectionalize Bus dialog box allows you to split a bus to create two buses, with existing branches divided between
them. You can sectionalize a bus at any time. You get to this dialog box from the Sectionalize button in the Input Data
Edit dialog box for the bus you want to split.

When the Sectionalize Bus dialog box first comes up, it assumes the current bus name and information from the Input
Data Edit dialog box. Note that the name of the current bus appears in both text boxes found at the top of the dialog
box. You change the name in the right-hand box to create a new bus record, which will inherit the bus type and voltage
of the old bus.

Once you have changed the bus name to a new one, you can arrange the branch information in the list boxes to define
the new connections. The list box under the left-hand text box applies to the bus name on the left side, and the list on
the right to the right-hand bus name. If you click on a record in either box, it will be transferred to the other. Use the
horizontal and vertical scroll bars to see information that is hidden.

After the two buses and their associated branches are satisfactory, you can optionally press the Bus Tie button to create
a “bus tie” record, which is a line with impedance 0.0 + 𝑗0.00001 between the new bus and the old one. The bus tie
record will appear in the text box.

Sectionalize Bus 1. This text box contains the bus type, name, and base kV of the current bus you are working with in
the Input Data Edit Box.

Sectionalize Bus 2. This text box initially contains the name of the current bus. You can change this to be any new bus
name. The new bus inherits the base kV, ownership, and bus type of Bus 1.

Bus Tie. Click this button if you want to tie the two buses with a low impedance tie line. This creates a bus tie record.
The branch record shows up in the text box. OK. Click this button to cause the new data to be saved in the memory-
resident bus and branch database. No changing action occurs until you click OK. The dialog box closes and returns
you to the Input Data Edit Box.

Reset. Click this button if you want to return to the initial state of a just opened dialog box. All changes that you have
made are erased and returned to initial conditions.

Close. Click this button if you have decided that no save action is necessary, that is, you do not want to make any
sectionalization changes to the memory-resident bus and branch database. Clicking this button closes the dialog box
and returns you to the Input Data Edit Box.

260 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.21: Sectionalize Bus Dialog Box

2.10.24 Line Tapping (may not be available)

Tapping a line means to service a new load by creating a new tap point bus on an existing line. The tapped line is
effectively segmented into two lines, separated with a newly created bus. If the load is remote from the tapped point,
an additional line and bus will be necessary. The new load and the new bus are connected by a new line. As with many
line operations, you access line tapping through a bus that the line is connected to.

Bus 1 Line Data. This text box displays the lines between bus 1 and the tapped bus. Initially, it contains all the lines
between Bus 1 and Bus 2.

Bus 2 Line Data. This text box displays the lines between bus 1 and the tapped bus. Initially, it is empty.

Scale Value Radio Buttons. These ratio buttons identify the line tap point in terms of three different criteria: (1)
percent of reactance from bus 1, (2) the distance from bus 1, (3) the section number. Note that transformers and series
capacitors (X < 0) have zero (0) length and cannot be tapped.

Scale Slide. A dynamic, moveable slider that shows the proportion of the selected scale on the line between Bus 1 and
Bus 2. The slider value changes according to what scale value radio button is currently active.

Base 1 Name. A bus name and base kV bus identifier specifying the terminal 1 bus of the line to be tapped.

Base 2 Name. A bus name and base kV bus identifier specifying the terminal 2 bus of the line to be tapped.

Reverse Scale. A button that flips the scale values from one end to the other.

Tapped Bus Name. The name and base kV of the new bus created at the tap point.

Send. Click this button to cause the line tapping operation data to be saved in the memory-resident bus and branch
database. The dialog box closes and returns you to the Input Data Edit Box.

Calculate. Click this button to see the effects of the slider operation. This action does not send any data to Powerflow.

Cancel. A button that closes the dialog box and causes no further action.

2.10. X Window Graphical Interface (gui) 261



Interactive Power Flow

Fig. 2.10.22: Line Tapping Dialog Box

262 Chapter 2. Contents



Interactive Power Flow

Close. Click this button if you have decided that no save action is necessary, that is, you do not want to make any
sectionalization changes to the memory-resident bus and branch database. Clicking this button closes the dialog box
and returns you to the Input Data Edit Box.

Help. (Not yet implemented)

2.10.25 Transmission Line

The transmission line dialog box specifies the identification and electrical characteristics of a balanced pi line, section
of a line, or series capacitor. See the L record Balanced Transmission Line Branch (L).

Name. Two eight character maximum, alphanumeric strings designating the buses. The strings must start with an alpha
character. The first name is placed in the first text box from the left. The next text box should have a four character
maximum numeric string representing the bus’s base kV rating. The second bus name and its base kV are to the right
of the first.

Metering. An integer (or blank) flag having three possible values: 1 means to meter at the bus 1 end; 2 means to meter
at the bus 2 end; and blank means to let the program decide on the following criteria — (1) when bus ownership differs
from bus ownership, meter at the point where line ownership differs from bus ownership, or (2) when both buses have
the same ownership, meter at bus 1 location.

Owner. A three character alphanumeric code representing ownership of the branch. Circuit ID. A single alphanumeric
character representing the circuit identification. Section. An integer (1-9) representing the section number for making
an equivalent for series elements. The elements are assembled in ascending numeric order. This may be blank or zero
if the line has only one section.

Resistance (R). A six digit real number representing the per unit resistance R.

Reactance (X). A six digit real number representing the per unit reactance X.

Admittance (G/2). A six digit real number representing the per unit admittance G.

Susceptance (B/2). A six digit real number representing the per unit susceptance B.

Number of Parallels. An integer representing the number of parallel circuits represented by this record.

Miles. A real number indicating the line length. Note: if a branch is composed of individual sections, then the total
line length is the sum of mileage of each section. Also, note that series capacitors (X < 0) have no mileage.

Current Ratings. Real numbers that are conductor current ratings in amps. Nominal is the normal rating based
on the line construction and conductor size. Thermal takes into account the effect of ambient temperature and other
environmental factors upon the maximum permissible temperature of the conductor, usually for short time periods.
Bottleneck is the minimum rating of the line including other series connected components, such as circuit breakers,
fuses, or disconnect switches.

Calculate Impedance. A button that allows you to compute the electrical parameters given the conductor size and
type, and tower geometry and length.

Tap Line. A button that allows you to tap a line with a newly added bus.

Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box values to their original values (before any changes were made).

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

2.10. X Window Graphical Interface (gui) 263



Interactive Power Flow

Fig. 2.10.23: Transmission Line Dialog Box

264 Chapter 2. Contents



Interactive Power Flow

2.10.26 Phase Shifter

The Phase Shifter dialog box allows you to add data for phase shifting transformers. See the T Transformer Data (T,
TP) and R records Regulating Transformer (R, RV, RQ, RP, RN, RM) for more details.

Name. Two eight character maximum, alphanumeric strings designating the buses. The strings must start with an alpha
character. The first name is placed in the first text box from the left. The next text box should have a four character
maximum numeric string representing the bus’s base kV rating. The second bus name and its base kV are to the right
of the first.

Metering. An integer (or blank) flag having three possible values: 1 means to meter at the bus 1 end; 2 means to meter
at the bus 2 end; and blank means to let the program decide on the following criteria — (1) when bus ownership differs
from bus ownership, meter at the point where line ownership differs from bus ownership, or (2) when both buses have
the same ownership, meter at bus 1 location.

Section. An integer (1-9) representing the section number for making an equivalent for series elements. The elements
are assembled in ascending numeric order.

Circuit ID. A single alphanumeric character representing the circuit identification.

Owner. A three character alphanumeric code representing ownership.

Parallels. An integer representing the number of parallel transformers in this record.

Resistance (R). A six digit real number representing per unit equivalent resistance R due to copper loss.

Reactance (X). A six digit real number representing per unit leakage reactance X.

Admittance (G). A six digit real number representing per unit shunt equivalent core loss conductance G (iron losses).

Susceptance (B). A six digit real number representing per unit shunt magnetizing susceptance B. This is always con-
verted to a negative number by the program.

Phase Shift. A five digit real number representing the fixed phase shift in degrees that describes bus 1 relative to bus
2.

Tap 2 kV. A five digit real number representing the fixed bus 2 tap. It is possible for a transformer to have both a phase
shift and a tap.

MVA Ratings. All MVA ratings (Nominal, Thermal, Bottleneck, and Emergency) are represented by four digit real
numbers. Nominal is the normal rating based on the construction. Thermal takes into account the effect of ambient
temperature and other environmental factors upon the maximum permissible temperature of the conductor, usually for
short time periods. Bottleneck is the minimum rating of the transformer including other series connected components,
such as circuit breakers, fuses, or disconnect switches.

Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box values to their original values.

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

2.10. X Window Graphical Interface (gui) 265



Interactive Power Flow

Fig. 2.10.24: Phase Shifter Dialog Box

266 Chapter 2. Contents



Interactive Power Flow

2.10.27 Transformer

The transformer dialog box allows you to add data for fixed tap transformers. See the T record Transformer Data (T,
TP).

Name. Two eight character maximum, alphanumeric strings designating connected buses. The strings must start with
an alpha character. The first name is placed in the first text box from the left. The next text box should have a four
character maximum numeric string representing the bus’s base kV rating. The second bus name and its base kV are to
the right of the first.

Metering. An integer (or blank) flag having three possible values: 1 means to meter at the bus 1 end; 2 means to meter
at the bus 2 end; and blank means to let the program decide on the following criteria — (1) when bus ownership differs
from bus ownership, meter at the point where line ownership differs from bus ownership, or (2) when both buses have
the same ownership, meter at bus 1 location.

Section. An integer (1-9) representing the section number for making an equivalent for series elements. This may be
zero or blank if the branch has only one section.

Circuit ID. An alphanumeric character representing the circuit identification.

Owner. A three character alphanumeric code representing ownership.

Parallels. An integer representing the number of parallel transformer banks in this record.

Resistance (R). A six digit real number representing per unit equivalent resistance R due to copper loss.

Reactance (X). A six digit real number representing per unit leakage reactance X.

Admittance (G). A six digit real number representing per unit shunt equivalent core loss conductance G (iron losses).

Susceptance (B). A six digit real number representing per unit shunt magnetizing susceptance B. This is always con-
verted to a negative number by the program.

Tap 1 kV. A five digit real number representing the fixed bus 1 tap.

Tap 2 kV. A five digit real number representing the fixed bus 2 tap.

MVA Ratings. All MVA ratings (Nominal, Thermal, Bottleneck, and Emergency) are represented by four digit real
numbers. Nominal is the normal rating based on the construction. Thermal takes into account the effect of ambient
temperature and other environmental factors upon the maximum permissible temperature of the conductor, usually for
short time periods. Bottleneck is the minimum rating of the transformer including other series connected components,
such as circuit breakers, fuses, or disconnect switches.

Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box values to their original values (before any changes were made).

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

2.10. X Window Graphical Interface (gui) 267



Interactive Power Flow

Fig. 2.10.25: Transformer Dialog box

268 Chapter 2. Contents



Interactive Power Flow

2.10.28 Regulating Transformer

The regulating transformer dialog box allows you to add data for regulating transformers. See the R record Regulating
Transformer (R, RV, RQ, RP, RN, RM).

Name. Two eight character maximum, alphanumeric strings designating connected buses. The strings must start with
an alpha character. The first name is placed in the first text box from the left. The next text box should have a four
character maximum numeric string representing the bus’s base kV rating. The second bus name and its base kV are to
the right of the first.

Owner. A three character alphanumeric code representing ownership.

R (subtypes). An option button allowing you to choose types R-blank, RV, RQ,RP, RN, or RM. See the R record in
the IPF Batch User’s Guide for a description of these types.

Low Alpha Fixed. A radio button that identifies the fixed tap side as at the low alpha order bus name terminal. Note
that this field is necessary only to resolve ambiguity if Min Tap and Max Tap cannot establish the variable tap side.
Low Alpha Fixed is the default.

Bus 1 Variable. A radio button that identifies the variable tap side as at the bus 1 terminal. Note that this field is
necessary only to resolve ambiguity if Min Tap and Max Tap cannot establish the variable tap side.

Bus 2 Variable. A radio button that identifies the variable tap side as at the bus 2 terminal. Note that this field is
necessary only to resolve ambiguity if Min Tap and Max Tap cannot establish the variable tap side.

Remote Bus. An eight character maximum, alphanumeric string designating the remote bus to be voltage-controlled.

Min Tap. A real number in kV that specifies the minimum tap on the variable tap side.

Max Tap. A real number in kV that specifies the maximum tap on the variable tap side.

Number of Taps. An integer specifying the number of taps on the variable tap side. This must be greater than one for
discrete taps; zero (0) indicates continuous taps. Zero is the default.

Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box values to their original values (before any changes were made).

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

2.10.29 Equivalent Network

The equivalent network dialog box allows you to add data for an equivalent, unbalanced pi transmission line branch.
See the E record Equivalent Transmission Line Branch (E).

Name. Two eight character maximum, alphanumeric strings designating connecting buses. The strings must start with
an alpha character. The first name is placed in the first text box from the left. The next text box should have a four
character maximum numeric string representing the bus’s base kV rating. The second bus name and its base kV are to
the right of the first.

Metering. An integer (or blank) flag having three possible values: 1 means to meter at the bus 1 end; 2 means to meter
at the bus 2 end; and blank means to let the program decide on the following criteria — (1) when bus ownership differs
from bus ownership, meter at the point where line ownership differs from bus ownership, or (2) when both buses have
the same ownership, meter at bus 1 location.

2.10. X Window Graphical Interface (gui) 269



Interactive Power Flow

Fig. 2.10.26: Regulating Transformer Dialog Box

270 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.27: Equivalent Network Dialog Box

2.10. X Window Graphical Interface (gui) 271



Interactive Power Flow

Owner. A three character alphanumeric code representing ownership.

Circuit ID. An alphanumeric character representing the circuit identification.

Section. An integer (1-9) representing the section number for making an equivalent for series elements. The elements
are assembled in ascending numeric order. This may be blank or zero if the line has only one section.

Resistance (R). A six digit real number representing the per unit resistance R through the branch from bus 1 to bus2.

Reactance (X). A six digit real number representing the per unit reactance X through the branch from bus 1 to bus 2.

Admittance (G1). A six digit real number representing the line’s per unit shunt conductance G at the bus 1 terminal.

Susceptance (B1). A six digit real number representing the line’s per unit shunt susceptance B at the bus 1 terminal.

Admittance (G2). A six digit real number representing the line’s per unit shunt conductance G at the bus 2 terminal.

Susceptance (B2). A six digit real number representing the line’s per unit shunt susceptance B at the bus 2 terminal.

Number of Parallels. An integer representing the number of parallel transformer banks in this record.

Current Ratings. Real numbers that are conductor current ratings in amps. Nominal is the normal rating based on
the line construction and conductor size. Thermal takes into account the ambient temperature and other environmental
factors upon the maximum permissible temperature of the conductor, usually for short time periods. Bottleneck is the
minimum rating of the line including other series connected components, such as circuit breakers, fuses, or disconnect
switches.

Add. A button that adds a new record to the database.

Modify. A button that modifies the record.

Reset. A button that restores text box values to their original values (before any changes were made).

Delete. A button that deletes (removes) a record from the database.

Outage. (Not yet implemented.)

Close. A button that causes the dialog box to close and disappear from the display without making any modifications
to the record.

2.10.30 Menu Commands

The commands descibed in this section are all accessible from the menu bar in the main window. The commands are
arranged alphabetically. Each command entry is found at the top of a page and shows you which menu it is on by
including the menu name in parentheses. For example, the entry Alpha Search (View) means that the Alpha Search
command is found on the View menu.

See the table below for a quick look at the main window menu commands.

272 Chapter 2. Contents



Interactive Power Flow

Page Command Description
4-
50

ALPHA SEARCH
(View)

Finds a specific bus by name.

4-
51

AREA/INTERCHANGE
(Edit)

Allows editing of area/interchange records.

4-
54

AUTO CFLOW (Pro-
cess)

Allows execution of CFLOW programs by users.

4-
57

BENDING POINTS
(View)

Turns on (and off) display of the capital B denoting a bending point.

4-
58

COLOR SCHEME
(View)

Switches between line display by overload or by nominal kV.

4-
59

COMMAND DIALOG
(View)

Allows typing of PCL commands for PF.

4-
61

ERROR MESSAGES
(Help)

Displays IPF error messages.

4-
62

EXIT (File) Exits IPF. Same as Exit button.

4-
63

GENERAL (Help) Displays on-line help text.

4-
65

NETWORK DATA
EDIT (Edit)

Allows editing of network data.

4-
70

OPEN (File) Allows loading of IPF files.

4-
74

PF ID/DESCRIPTION
(Edit)

Allows creating and saving of user case description.

4-
76

PLOT OPTIONS (File) Allows changing of printer and diagram attributes and the printer device itself.

4-
83

PRINT PLOT (File) Prints a case diagram to the currently set printer

4-
84

REPORTS (View) Creates some standard PF reports and allows display viewing, hard copy print-
ing, and writing to files.

4-
91

RUN CFLOW (Process) Allows the running of CFLOW C programs from IPF. (Intended for CFLOW
programmers.)

4-
92

SAVE (File) Saves change, base case, and coordinate files.

4-
96

SOLUTION DATA OFF
(View)

Rewrites the display without rewriting the current solution data.

4-
97

SOLUTION DATA ON
(View)

Rewrites the display with the current solution data.

4-
98

SOLVE CASE (Process) Initiates the solution of a resident base case

2.10. X Window Graphical Interface (gui) 273



Interactive Power Flow

Alpha Search (View)

The Alpha Search dialog box allows you to find any bus within the currently loaded base case data. Any bus selected
when you close this dialog box becomes the currently selected bus until some other selection process changes it.

When you open the dialog box from the View menu, you see a text box below Search Bus Name kV. Type in this box
any character or string of characters matching the first part of the name of the bus you are looking for. Thus, if you
are looking for CASCADTP, you type in C, CA, or CAS to take you to the part of the bus list starting with C, CA, or
CAS. Note that the search function is case sensitive; that is, c and C are not the same. The search function immediately
begins searching as soon as you enter a character in the text box.

You can also use the scroll bar to go up or down the list to visually identify the bus you are looking for, and then select
the desired bus by clicking it

Search Bus Name kV. Use this text box to type a string of letters at the beginning of the bus name you are looking for.

Close. Clicking this button makes the last selected bus name into the currently selected bus. The dialog box then
closes.

Area/Interchange (Edit)

For area or intertie studies, you can add, modify, or delete areas or interties. You do this through the main window
Area/Interchange command.

The Area/Interchange dialog box includes all the area and intertie records from the currently resident base case - one
record per line in a list box. Selecting a line puts the line in the Selection text box. Then press the Edit Area/Intertie
Record button to bring up a dialog box with the data in it.

List of Area Control and Intertie records. This scrolling list contains all the area and intertie records from the
currently resident base case. Area records are listed first followed by intertie records. Scroll through the list to find the
one you want. Select it by clicking on it.

Selection. This text box contains the currently selected record from the list of records above. This text will not change
when you edit a record, so you can compare the new record with the old.

Edit Area/Intertie Record. Clicking this button opens a dialog box where you can edit the currently selected area or
intertie record (line).

Apply. Not available.

Close. Clicking this button causes the Area/Interchange dialog box to close and disappear from the display.

Create New. Clicking this button brings up the a blank dialog box so you can create a new area or intertie record.

Interchange Area. A ten character maximum name designating an interchange area of a network.

**Area Slack Bus. An eight character maximum name designating the area slack bus plus a four character maximum
real number representing the base kV rating of the slack bus.

Scheduled Export. An eight character maximum real number designating the scheduled export in MW. Negative
denotes inflow.

Zone. A two character alphanumeric designating zone. The zone at the extreme left must be filled in; others may be
blank or filled.

Max PU Volt. A four character maximum real number designating maximum per unit voltage for this area.

Min PU Volt. A four character maximum real number designating minimum per unit voltage for this area.

Modify. A button that modifies and updates in place a record (line) in the Area/Interchange dialog box. The data in
the selection box is not changed.

Add. A button that adds a new record (line) to the list in the Area/Interchange dialog box.

274 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.28: Alpha Search Dialog box

2.10. X Window Graphical Interface (gui) 275



Interactive Power Flow

Fig. 2.10.29: Area/Interchange Edit Dialog Box

Fig. 2.10.30: Area/Interchange Record Dialog Box

Delete. A button that deletes (removes) a record (line) from the list in the Area/Interchange dialog box.

Reset. A button that restores text box values to their original values (before any changes were made).

Close. Clicking this button causes the Area/Interchange dialog box to close and disappear from the display without
making any changes to the Area/Interchange records.

Area Name 1. A ten character name designating an area of a network.

Area Name 2. A ten character name designating an area of a network.

Sched Export Number for Sched Interchange. An eight character maximum real number representing scheduled
power transfer from Area Name 1 to Area Name 2.

Modify. A button that modifies and updates in place a record (line) in the Area/Intertie Selection dialog box.

Add. A button that adds a new record (line) to the list in the Area/Intertie Selection dialog box.

Delete. A button that deletes (removes) a record (line) from the list in the Area/Intertie Selection dialog box.

Reset. A button that returns text box values to their original values (before any changes were made).

Close. Clicking this button causes the Intertie Record dialog box to close without making any changes to the
Area/Interchange dialog box records.

Auto CFLOW (Process)

CFLOW files are C programs using the IPF CFLOW library of routines. These routines enable you to access the base
case memory-resident data in IPF. Many CFLOW programs are designed to collect information for specialized reports
that are not built into IPF in the Reports command. See CFLOW C API (libcflow) for more information.

There are two ways to execute a CFLOW program: Auto CFLOW is one; Run CFLOW is the other. Refer also to Run
CFLOW later in this section so that you choose the appropriate CFLOW execution command.

The Auto CFLOW command is used primarily by CFLOW program users (rather than programmers) for CFLOW
programs that are fully debugged and “production-grade.” These CFLOW programs create windows for I/O themselves
or are embedded in script or command file utilities that do. Thus, any I/O to or from the screen is program I/O only and
not potentially confusing for a user. Alternatively, the CFLOW program may have no screen I/O and simply produce
file output for a report. See Figure 4-21.

276 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.31: Intertie Record Dialog Box

Programs that read/write to stdin or stdout would have their I/O intermixed in the same terminal window as the
gui and ipfsrv server. Such programs should be run with the Run CFLOW command not with the Auto CFLOW
command.

To use the Auto CFLOW command:

1. Start up IPF and load a base case file.

2. Select the Auto CFLOW command and (if necessary) specify a socket id number (any integer between 1024 and
4096). Generally the default socket number will be OK.

3. Use the file selection dialog box to find and select a CFLOW program. Double click the program name or click
Launch CFLOW to run the program.

Note: When you have launched a CFLOW program, you cannot do anything else in the GUI until the program is
finished running. Also if the CFLOW program fails, control is returned to IPF. However, if the CFLOW program hangs
(as in an infinite loop), you need to kill the CFLOW process through operating system resources. (For example, in
Unix, this can be done with the kill command.) See your computer system documentation or your system administrator
for help.

Socket Number. This is the number of the TCP/IP socket which CFLOW will use to connect to ipfsrv. Normally,
you should not have to change it.

CLFOW Program Arguments. If the particular program you want to run requires input arguments, enter them here.
You cannot, however, use this to redirect input or output.

Filter. The file name text box contains a “filter” that selects categories of file names. You can directly modify the file
name text by clicking in the Filter box and then typing in new text. Then click the Filter button below to apply the new
filter.

2.10. X Window Graphical Interface (gui) 277



Interactive Power Flow

Fig. 2.10.32: Auto CFLOW File Dialog box

278 Chapter 2. Contents



Interactive Power Flow

Directories. This list component contains directory names. You cannot modify these directory names by selecting
them and typing. Use the scroll bars at the side and bottom to move the list up and down or back and forth. The UNIX
operating system arranges directories in a “hierarchical” way. You move up this hierarchical tree structure by double
clicking the directory name ending with a period-period (..). You move down by selecting the name of the directory
you want to move into.

Files. This list component contains file names that are within the directory named at the left that ends with a period (.)
and that satisfy the filter criterion specified above in Filter. You cannot modify these file names by selecting them and
typing. Use the scroll bars at the side and bottom to move the file names up and down or back and forth.

You select a file name by clicking once on the file name. This puts the selected file name in the Selection file name text
box below.

Selection. This file name text box contains the file name selected by clicking a file name in the Files file list. Or, since
it is a text box, you can directly modify the file name by selecting text and typing replacement text. Be sure to type an
exact file name and not a wildcard character such as the asterisk (*) as part of the file name.

Launch C Flow. This button causes whatever file name is in the Selection text box to be passed to the operating system
as an executable file. The file is then run.

Filter. Clicking this button causes all file names satisfying the filter file name text in Filter to appear in the Files file
list. It also puts the currently selected directory name without the file name in the Selection text box. You must select
a file name from the Files file list to select a specific file name.

Cancel. Clicking this button causes the Auto CFLOW File dialog box to close and disappear from the display. No
directories or file names are changed with a Cancel action. Thus, if you immediately open the dialog box after a Cancel
action, you return to the state you just left. The directories and files names are not returned to some default state.

Help. (Not yet implemented).

Bending Points (View)

This command toggles on or off the display of a capital B at line bending points. The display of the capital B is simply
to make line bending points completely apparent at a quick glance.

Fig. 2.10.33: Bending Points On and Off

2.10. X Window Graphical Interface (gui) 279



Interactive Power Flow

Color Scheme (View)

This command causes the display of lines to switch between two modes: Color by kV or Color by Overload. Color by
kV causes the display of lines to match the ranges that are keyed in the lower left-hand corner Branch Color Key. Color
by Overload causes the display of lines to match the ranges that are keyed in the Overloaded Branch Key. These two
keys are found in the same location in the main window and change when you change the command.

In the Color by Overload mode, you can type in percentages of overload. The figure below shows 90% for Mild
Overload, 100% for Moderate Overload, and 110% for Extreme Overload.

Fig. 2.10.34: Branch Color Key

Fig. 2.10.35: Overloaded Branch Key

After you change the overload percentages, you will have to go back to the kV color scheme and then back again to the
overload color scheme in order to redisplay the map with the new percentages implemented.

280 Chapter 2. Contents



Interactive Power Flow

Command Dialog (View)

The Command Dialog box allows you to type Powerflow Command Language commands and send them to ipfsrv.
It also allows you to see the communication that passes between the GUI and PF components of IPF as IPF runs.

Note: Tis command is intended for advanced users. It was created for program development and may be useful for
users wanting to observe the interprocess communication channel traffic.

The top box is a scrolling text box that stores PCL commands you type in the text box labeled Command Entry. The
PCL commands list can be double-clicked to put the command into the Command Entry box. The third box down
shows you what IPF’s GUI component sends across the IPC channel to the PF component. The fourth box down shows
what PF sends back to the GUI in response to the previously passed command. The third and fourth boxes are output
only and are not responsive to any mouse clicks. Note that you can vary the vertical size of both output-only boxes by
pressing on the sash controls and moving them up or down.

Note: Be sure to terminate the command set with *[EOM] or ^[EOM]. The former issues a synchronous command;
the latter, an asynchronous command.

Command Entry. This text entry box is intended for valid PCL commands that you want to send to the PF component
of IPF. There is no syntax checking at data entry time. PF does all the checking once a command is sent. The command
is sent to PF when you press the Return key. See the Powerflow Command Language (PCL) section for information on
valid commands.

Close. Clicking this button causes the dialog box to disappear from the screen. No other action is performed.

Error Messages (Help)

When an error condition occurs, such as when IPF detects bad data, the Error Messages dialog box contains messages
to help you determine what caused the error. See below.

These messages, along with many others, also appear in the terminal window where you started IPF. The other messages
are usually not of any interest to a user. However, if you want to view the interation report, you will have to look at the
terminal window. This information is not displayed anywhere in the GUI.

Note: This dialog box pops up on its own only when the error message is a fatal one.

Identifier. This text box specifies the identifier (source code file) where an error condition occurred. This message
assists the programming staff to locate the source message.

Line. This text box gives the source code line number associated with the identifier where an error condition occurred.

Close. This button closes the Error Messages dialog box.

Help. This button brings up the IPF help system window.

2.10. X Window Graphical Interface (gui) 281



Interactive Power Flow

Fig. 2.10.36: Command Dialog Box

282 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.37: Error Box Dialog Box

Exit (File)

This command exits you from IPF. You can exit at any time. The exit command is also available on a button below
the toolbox in the main window. Although you can also click on the X Windows menu button at the upper right of the
window to close, this is not the recommended method of exiting from IPF. It should be used only as a last resort.

OK. Clicking this button exits you to the operating system.

Cancel. This closes the Exit dialog box without any action.

General (Help)

The IPF help system provides a condensation of this documentation. See below.

In addition to the Page Up and Page Down window buttons and scroll bar, the Help system text itself has a feature to
help you navigate. The text incorporates hyperlinks. These allow you to jump immediately to a desired spot in the help
text.

At the top of the Help text is a list of topics. You can click on a topic to go to the text explaining that topic. To read the
topic text on a page, use the scroll bar. Use the Page Up and Page Down buttons at any time to go to different pages,
one page at a time.

The Annotate button allows you to attach your own notes to a particular page. See below. A red paper clip shows up
in the left margin after you save a note, indicating that a note exists. To read an existing note, just click the Annotate
button when you see a red paper clip.

Page Up. The Page Up button finds the next page marker toward the beginning of the IPF Help file. Page Up does not
go to the top of the next page up. Use the scroll bar to scroll to the top of the page if necessary.

Page Down. The Page Down button finds the next page marker toward the end of the IPF Help file. Page Down does
not go to the top of the next page down. Use the scroll bar to scroll to the top of the page if necessary.

2.10. X Window Graphical Interface (gui) 283



Interactive Power Flow

Fig. 2.10.38: Exit Dialog Box

Annotate. The Annotate button opens a text window that you can type text into. If you want to save the text, click the
Save button; if you want to clear or remove the text, click the Remove button; Close closes the Annotation dialog box
without making further changes.

Close. The Close button closes the Help system window.

Network Data Edit (Edit)

There are two ways to edit bus and branch data in IPF. Editing via the Network Data Edit dialog box is just one. See
below. The other one is the Input Data Edit Box. Each of the ways offers its own benefits. See the Input Data Edit Box
for more information.

The advantage of Network Data Edit over the other two methods of editing is that you can access the entire network
data base using filters. The other editing methods require accessing the network data through the displayed network
diagram or through the Bus List dialog box.

Note: Network Data Editing is designed for the expert user. Editing a network data record directly is intended for
advanced users who already know the exact columns for specific data fields in each network record. See Powerflow
Command Language (PCL) for network record format information.

When you use the Network Data Edit dialog box, editing is performed indirectly on the resident network data using
either an internal editor or an external editor. The internal editor is very basic; it permits cutting, pasting, and overtyping.
The external editor can be any editor selected by the GUI setup script file. For UNIX systems, vi is usually the editor
specified. There is no formatting or data validation support other than that provided by the user’s external editor. No
matter which you choose, the work is actually done on an intermediate file from which network changes may later be
assimilated.

284 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.39: General Help Dialog Box

2.10. X Window Graphical Interface (gui) 285



Interactive Power Flow

Fig. 2.10.40: Annotate Dialog Box

286 Chapter 2. Contents



Interactive Power Flow

Editing of the network data is done with a screen editor. Four steps are required to successfully accomplish data editing.
See below.

1. Select individual items within a filter. The filter list is scrollable so that you can see items outside
the visible listing. When you click the left mouse button anywhere on a non-highlighted item, the line
highlights by reverse video, indicating selection. You can unselect by clicking again on the same item
using the left mouse button. You can continue to select as many additional items as you like. If none are
selected, the default is that all the items for the filter are selected. 2. Apply the selected filter(s) by pressing
the Apply button(s). 3. Click either the Internal or External Editor button to display the data. 4. Edit the
data in the display box. You can use the cursor “arrow” keys to move around in the data and to cause it to
scroll up and down. 5. Process the edited file using the Send To PF button.

The last step concludes the editing session. If it is skipped, no changes are performed upon the system. If it is applied,
the edited file is automatically processed into network data changes and sent to Powerflow.

Fig. 2.10.41: Network Data Edit Dialog Box

Dynamic Filters

The power of the Network Data Edit dialog box is realized in applying the dynamic filters. Six filters allow you to
restrict the amount of network data displayed. The filters are Area, Base, Zone, Owner, Bus, and Type. The filters
are dynamic because they propagate “downstream” (from left to right) the effects of previously defined filters upon the
remaining filters.

Initially, all of the filters are primary and each filter displays the full attributes of its type. However, suppose you select
one of the filters, say Owner, and highlight individual owners of interest. Then press the Apply button. Three things
happen.

1. The Owner filter becomes the solitary primary filter; it is automatically repositioned to the leftmost
position in the dialog box. The Apply button on this filter is ghosted, indicating that it has been applied.
2. The remaining filters are now collectively called secondary filters. They are repositioned on the dialog
in an arbitrary order on the right of the primary filter. The effects of the primary filter are applied to the
secondary filters through the network (downstreaming). There is a one exception, Type, whose display is
always static. 3. Only the network items that collectively meet the combined filter criteria are displayed.

2.10. X Window Graphical Interface (gui) 287



Interactive Power Flow

The effects of the primary filter can be undone by pressing the Reset button. The procedure can be repeated for all
remaining filters. The first selection, mentioned above, identifies the primary filter; the second, if selected, identifies
the secondary filter; the third, the tertiary filter; etc. Select any of the remaining filters that do not have their Apply
buttons ghosted. Make selections and press the Apply button. The filters will be repositioned again from left to right:
primary, secondary, tertiary, etc.

The display for each filter is always current, and it shows selected network attributes (owners, zones, base kVs, etc.)
that will be extracted if an Edit button is pressed.

Through judicious use of filters, you can reduce the size of the displayed network to a few hundred items. Since all of the
displayed data must be encoded in Power flow and transported to the GUI process via the interprocess communication
channel, the time to retrieve network data can become very long for large systems.

Table 2.10.2: Description of Type Filter
Code Description

• Retrieves all data.

A* Retrieves A, A0, A1, A2, A3, A4, and I data.
A? Retrieves A, A0, A1, A2, A3, A4 data.
I Retrieves I data.
B* Retrieves all bus and branch data.
L* Retrieves all branch data including LTCs, transformers.
B? Retrieves all bus types.
B, BE, BS, BC, BD, BV, BQ, BG, BT, BX, BM, BF Retrieves specific bus type(s) named.

• Retrieves all continuation bus data.

X Retrieves X data.
Q Retrieves QP, QX, and QN data.
L, LD, LM, E, T, TP, R, RZ Retrieves specific branch type(s) named.

Apply. Clicking this button applies the selection of items within the filter to the remaining filters. It also promotes that
filter to the next available downstream order: primary, secondary, tertiary, etc.

Reset. Clicking this button resets the filter in context with its status (primary, secondary, tertiary, etc.). If you wish to
reset the filter to its primary state, you must first reset the original primary filter - the leftmost displayed one. Resetting
a filter also unhighlights any prior selected items.

Internal Editor. Clicking this button applies the filters to the network database, and displays the retrieved data in
the editing portion of the dialog box. The edit dialog box is a scrollable list; it supports only basic functions, such as
cutting, pasting, and overtyping. The input data for the editor resides in the file editbus.dat; the output data is in the
file editbusn.dat.

External Editor. Clicking this button applies the filters to the network database, and displays the retrieved data in a
selected external editor in a new terminal window. For UNIX, the default external editor is vi. The input data for the
editor resides in the file editbus.dat; the output data is in the file editbusn.dat.

Send To PF. Clicking this button applies a script file to the two files editbus.dat and editbusn.dat, translating
the differences into a change file editbusc.dat. Network data changes are not made until this step is performed.

Close. Clicking this button closes the dialog box. This does not cancel any changes which have already been sent to
PF.

288 Chapter 2. Contents



Interactive Power Flow

Reviewing Network Changes

Once the Send To PF button is clicked, the editing changes are translated into equivalent Power flow data change
records, which are sent to Powerflow. Since little or no data checking or validation is performed prior to the dispatch,
the possibility of errors is high. You can check the status of your changes by viewing the Network Changes report in
the View-Reports menu and the System Errors in the Help menu.

Notes

When using the internal editor, remember that you are in overtype mode only. Delete and Backspace keys may delete
forward or backward depending on your X defaults. The Tab key inserts a blank character, but there is no insert mode.

The Powerflow and GUI must be launched from the same directory and reside on the same platform. The file passed
in the IPF command /CHANGEs, FILE = editbusc.dat does not contain directory or node prefixes.

The branch data is displayed double entry. If both terminal buses of a mutual branch are displayed in the edit dialog
box, then the branch is displayed twice. It suffices to edit either branch entity; it is redundant to edit both branch items.

Editing an identification field amounts to deleting an old network data entity and adding a new network data item.
Editing a data field amounts to modifying the data field. There is a special problem with blanks in data fields. Blanks,
when applied to change modifications, designate “no changes.”” You must enter a zero (0) to delete a data field within
a network data record.

An external program ipf_diff translates differences between files editbus.dat and editbusn.dat into equivalent
network data changes and puts them into the file editbusc.dat. The script defining this procedure must be installed
in the GUI.

Open (File)

The Open command allows you to specify which files you want to work with. You can open files, work with them, and
save them (or discard the work and not save them) as many times as you like, once IPF is executing. You do not need
to exit IPF and start it up again once you are done with a given set of files. You simply load the next file(s) you want to
work with. They replace (overwrite in memory only!) the previously loaded files. See Save and Exit.

When you first choose Open, you may see file names already existing in some of the text boxes. These default file
names come from the X resource file for IPF, the XGUI file, in your logon directory. You can change these defaults to
fit your operation. Read about the XGUI file in Customizing the GUI (XGUI).

There are three areas in the OPEN dialog box: a file type selection panel at the left, a standard Motif file selection
dialog in a panel at the right, and a “load files” area at the bottom. See below.

The basic file specifying and loading process goes like this:

1. Select a file type in the file type area.

2. Specify the exact file to load in the file selection dialog.

3. Do steps 1 and 2 until all files you want to work with are selected.

4. Load them all with the Load Selection button at the bottom.

All text boxes where file names appear are standard Motif file name text boxes. Thus, you can modify the file names at
any time simply by typing new text into the text box. If a full name is hidden at one end or the other of a text box, put
the mouse cursor in the text box, press the left mouse button and drag till the hidden file name text comes into view.
Press and ‘paint’ to select text; then type to replace it.

The asterisk (\*) in a file name is a “wildcard” character that stands for “any string of characters of arbitrary length.””
So, for example, *.BSE matches any file name that ends in .BSE.

2.10. X Window Graphical Interface (gui) 289



Interactive Power Flow

Fig. 2.10.42: Open Dialog Box

Command File. One of five areas in the file type selection panel. The associated Select button and file text boxes apply
to IPF command files. This ASCII text file is made up of standard Powerflow Command Language (PCL) commands
and data. PCL files are generally used by advanced users. See the Powerflow Command Language (PCL) for more
information.

Change File. One of five areas in the file type selection panel. The associated Select button and file text boxes apply
to IPF change files. This ASCII text file is made up of commands and data records representing modifications intended
for the current case under study. Such a file is applied automatically when it is loaded.

Base Case File. One of five areas in the file type selection panel. The associated Select button and file text boxes apply
to IPF base case files. This is the main, binary format ‘history’ file of IPF after it has run a solution.

Network Data File. One of five areas in the file type selection panel. The associated Select button and file text boxes
apply to IPF “raw” network data files. This ASCII text file consists of bus and branch data and usually represents basic
data for a new network to be studied with IPF.

Coordinate File. One of five areas in the file type selection panel. The associated Select button and file text boxes
apply to IPF coordinate files. This ASCII text file contains position and identification data for buses and branches in a
given network. The file may be modified independently of its associated base case file or network data file.

Select. A button whose action transfers its associated file name filter with the wildcard (*) to the file name text box
labeled Filter in the file selection dialog. Pressing Select causes the file selection dialog box to change to the directory
specified by the wildcard file name in the file name text box associated with the Select button. The filter is specified in
the left-hand text file box. The right-hand text file box contains the name of the actual file to be loaded, not a file name
filter.

Ready to Load. Feedback information telling you the current state of the file in the associated file name text box. This
is not a button. “Ready to Load” reminds you that IPF does not yet know about this file. You must load it with the
Load Selections button below.

Loaded. Feedback information telling you that you have previously loaded the associated file. Thus, IPF is ready to
operate on this file. This is not a button. If there was some problem loading the file, this box will say “Not Loaded”.

290 Chapter 2. Contents



Interactive Power Flow

Filter. The file name text box contains a “filter” that selects categories of file names. You can directly modify the file
name text by selecting text and typing in new text, or more commonly, you can use the Select button in the file type
selection panel at the left to put a file name filter in the box. If you modify the file name filter, you must click the Filter
button below to change the directory and file list displays.

Directories. This list component contains directory names associated with the filter directory. You cannot modify
these directory names by selecting them and typing. Use the scroll bars at the side and bottom to move the directory
names up and down or back and forth. Click the arrows or the click the bar between the arrows and drag to move the
names so you can see them. You move up the directory structure by double clicking the directory name ending with a
period-period (..). You move down by selecting the name of the directory you want to move into. You can also select
a directory and press the Filter button.

Files. This list component contains file names that are within the directory named at the left that ends with a period
(.) and that satisfy the filter criterion specified above in Filter. You cannot modify these file names by selecting them
and typing. Use the scroll bars at the side and bottom to move the file names up and down or back and forth. Click the
arrows or click the bar between the arrows and drag to move the names so you can see them.

You select a file name by clicking once on the file name. This puts the selected file name in the Selection file name text
box below. You can then put the selected file name in the appropriate file name text box in the file type selection panel
at the left by pressing Apply. You can accomplish the same thing by double clicking the file name in the Files box.

Selection. This file name text box receives the file name selected by clicking a file name in the Files file list. Or, since
it is a text box, you can directly modify the file name by selecting text and typing replacement text. Be sure to type an
exact file name; do not use a wildcard character such as the asterisk (*) as part of the file name.

Apply. This button causes whatever file name is in the Selection text box to be put in the appropriate file name text box
in the file type selection panel at the left. This has the same effect as double clicking the file name in the Files file list.

Filter. Clicking this button causes all file names satisfying the filter file name text in Filter to appear in the Files file
list. It also puts the currently selected directory name without the file name in the Selection text box. You must select
a file name from the Files file list to select a specific file name.

Help. (Not yet implemented).

Load Selections. Clicking this button sends a “load all the specified files” message to the PF component of IPF. The
dialog box also closes and disappears. You can verify that the specified files were loaded by selecting OPEN again.
Files that have been previously loaded display the “Loaded” message above the file name text box.

Close. Clicking this button closes the dialog box without changing any directory or file name values. You can close at
any time.

Note: For more information about the various file types you can open, see Network Data.

PF ID/Description (Edit)

The PF ID/Description dialog box is the way you provide titling and comments for a case. These are saved with the
case when you save it in a base case file with the Save command. If you loaded a case from a base case file, any titling
and comments that were in the file will be displayed in this dialog. See below.

Case Id. Ten character maximum, alphanumeric field identifying the base case.

Description. Twenty character maximum, alphanumeric field identifying the particular study, project, etc.

PF Header(s). These three records will be printed on each batch output report page and hardcopy map. The first line
is generated by the program and contains the Case ID and Description fields. The other two lines can be entered by the
user.

2.10. X Window Graphical Interface (gui) 291



Interactive Power Flow

Fig. 2.10.43: PF/ID Description Dialog Box

292 Chapter 2. Contents



Interactive Power Flow

PF Comments. Up to 20 additional lines of description and comment can be added. These are stored with the system
data, so they will be visible here when you open an old base file. They are also printed in conjunction with certain
batch reports, if you load the old base in BPF.

Reset. Clicking this button erases the Case, Description, and PF Comments text boxes, and closes the dialog box.

Apply. Clicking this button sends the current contents of all the text boxes to the currently resident case and closes the
dialog box. If you save the case, everything you have applied will be saved with the case. The dialog will show any
saved text when it is opened.

Close. Clicking this button closes the dialog box without changing any values in any of the text boxes. You can close
at any time.

Plot Options (File)

The Plot Options command allows you to create a network diagram, or map file that can be printed on a PostScript
compatible printer. The plots may have insets and legends as well as the usual power system bus, branch, generator,
shunt, series compensation, area bubble, intertie line, and other symbols. They are not a copy of what you see on the
screen, although both the display and the hard copy are based on the coordinate file you currently have loaded.

Four dialog boxes, User Comments, Page Options, Diagram Options, and Plot Destination, allow considerable cus-
tomization of the default power system plot. The basic diagram layout is selectable from the Diagram Options dialog
box. In addition to the default of real and reactive power flow, current and MVA, loss, difference, and interchange
diagrams are selectable.

Some computer systems provide previewing capability on your display by means of a separate PostScript viewing
utility. Check with your system administrator to see if your system has this capability.

See Network Diagrams for information about how IPF produces a PostScript plot file.

User Comments

The User Comments menu item provides a way for you to include text comments on a plot. See below.

You can enter comments that will be shown in a block on the diagram. A comment beginning with an ampersand (&)
identifies an auxiliary coordinate file name. Only one such file is currently allowed, and it must be identified in the last
comment. The auxiliary coordinate file data will be appended to the coordinate file data edited in the GUI

OK. Clicking this button accepts all text as it is currently shown, passes this on to IPF, and closes the dialog box.

Plot Now. Clicking this button sends the currently resident plotting information to the currently selected printing
device, and then closes the dialog box.

Close. Clicking this button closes the dialog box without changing any text you have entered. No text is passed on to
IPF. You can close at any time.

Page Options

The Page Options dialog box facilitates selection of options that control the general appearance of a network diagram.
The options you choose are incorporated into the network diagram file. See below.

Orientation. Portrait specifies that the long axis of the paper is vertical. Landscape specifies that the long axis is
horizontal. Portrait is the default.

Transparency. Insets such as the legend or a detailed section of the diagram can show what is underneath them. This
property is called transparency. Opaque specifies that objects underneath will not show through. Transparent specifies

2.10. X Window Graphical Interface (gui) 293



Interactive Power Flow

Fig. 2.10.44: User Comments Dialog Box

that objects underneath will show through. For insets, legends, and identification labels usually Opaque is specified.
Opaque is the IPF default.

Paper Size. Width specifies the width of the paper. Height specifies the height of the paper. Make sure your printer
can handle the size paper you specify. Two buttons specify 21.59 cm by 27.94 cm (8.5 by 11 inch) paper or 27.94 cm
by 43.18 cm (11 by 17 inch). The IPF default is 21.59 cm by 27.94 cm (8.5 by 11 inch).

Border Top Right Corner. A border is a solid-line rectangle surrounding graphical objects. X cm and Y cm are real
numbers that specify x and y values for position with respect to the top right corner of the drawing area. The lower left
corner is analogous to (0,0) in the Cartesian coordinate system.

Case Name Position. A case name is the user-specified identification associated with a particular case study and is
saved in the base case file. X cm and Y cm are used to position the case name.

Comments Position. Comments are from the User Comments dialog box and the base case file. Offset. X cm and
Y cm are real numbers specifying the x and y locations of the lower left corner of an insert relative to the lower left
corner of the paper. The lower left corner is analogous to (0,0) in the Cartesian coordinate system. The default values
for X cm and Y cm are 0.0.

Scale Factor. X and Y are real numbers specifying whether the x and/or y axes should be enlarged or reduced. Numbers
larger than 1.0 enlarge the size of diagram objects. Positive numbers smaller than 1.0 reduce the size of diagram objects.
The default values for X and Y are 1.0.

Label Box Coordinates. Typically, the label box is in the lower right corner of the diagram. You may then enter just
the top left corner of the box. The bottom right corner must be entered also if the box is elsewhere in the diagram.

When the label box option is selected, several default locations are established relative to the upper left corner of the
box. Default options, which can be overridden by options on the Page Options menu, are

• Coordinate file name, positioned above the box.

• Powerflow case name, date, and Powerflow program version, positioned inside the box.

• Powerflow description, positioned below the Powerflow case name.

294 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.45: Page Options Dialog Box

2.10. X Window Graphical Interface (gui) 295



Interactive Power Flow

• Comments entered by the user, positioned below the Powerflow description.

• Comments from the Powerflow case, positioned below comments entered by the user.

• Border; the maximum size allowable considering the paper size and printer capabilities.

Accounting information is below the border and is fixed. This information shows the diagram type, flow options, and
dates and versions of the Powerflow program used to generate the Powerflow case and diagram.

Legend Position. This locates the top left corner of the legend. The legend provides a description of branch symbols
used in the diagram.

OK. Clicking this button accepts all values as they are currently set and closes the dialog box.

Close. Clicking this button closes the dialog box without changing any values. No changed values are passed on to
IPF. You can close at any time.

Diagram Options

The Diagram Options dialog box allows for selection of power flow values that appear on a network diagram. The
options you choose determine which power flow solution data is combined with coordinate data to create a PostScript
network diagram file. See below.

Bus Name. Coordinate files contain the bus record identifier consisting of bus name and base kV and an alternate
coordinate diagram identifier called a bus abbreviation. The Abbreviation identifier simplifies crowded diagrams.
Abbreviation is the default.

Bus Voltage. Bus Voltage allows either the actual kV or per unit voltage to be displayed. The actual kV value is the
default.

Generation. Specifying Generation means that the P and Q generation values and generator graphic symbol show on
the diagram.

Shunt. Specifying Shunt allows you to see shunt values and a graphic symbol.

Show Phase Angle. Specifying Show Phase Angle means that bus angle with respect to the slack bus shows on the
diagram.

Show Load. Specifying Show Load allows you to see actual load values near the bus voltage values.

Show Total Flow of Undrawn Branches. Specifying Show Total Flow of Undrawn Branches allows you to see P and
Q flow values into undrawn branches.

Show Outages. Specifying Show Outages means that outaged branches show in the diagram.

Parallel Lines. Specifying Combined adds multiple circuit power flow values together. Specifying Separate allows
you to see flow values for each individual branch. Combined is the default.

Transfrmr Taps. Transfrmr Taps shows any transformer taps.

Compensation. Compensation shows series compensation values.

Outages. Outages shows outaged branches.

Values. Specifying Normal shows the solution values of a given Powerflow case. Specifying Difference allows you to
compare two power flow cases and show the differences.

Diagram Type. Diagram Type can be only one type at a time. Specifying PQ Flow shows P and Q power flow values.
This is the default. Specifying MVA & I shows megavoltamperes on transformers and current flows on lines. Specifying
Loss shows transmission system loss values. Specifying Interchange creates a diagram that shows net generation, load,
and line flow values for area interchange studies. Specifying Coordinates creates a diagram with no solution data. This
may be used for verifying that bus and branch placement is satisfactory.

296 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.46: Diagram Options Dialog Box

2.10. X Window Graphical Interface (gui) 297



Interactive Power Flow

Flow Detail. The options in Flow Detail allow you to fine tune how you want to show the P and Q flow values. Your
choices are: P Sending End, Q Sending End, P Receiving End, and Q Receiving End. P Sending End and Q Sending
End is the IPF default.

OK. Clicking this button accepts all values as they are currently set and closes the dialog box.

Close. Clicking this button closes the dialog box without changing any values. No changed values are passed on to
IPF. You can close at any time.

Plot Destination

The Plot Destination option allows you to select the printer device most convenient or suitable to your job. You select
a print command from the top list window, and the command appears in the text box below. You can edit the command
in the text box. See below.

When you first open this dialog box, a default print command shows in the Selection text box. IPF reads the XGUI file
in your home directory to find this print command. You can edit the ASCII text XGUI file to change this default print
command. See Customizing the GUI (XGUI) for a discussion of how to modify the XGUI file.

Items. This scrolling window shows the print plot commands currently available. Selecting an item in the window
makes it appear in the Selection text box below.

Selection. This text box contains the command string that IPF uses to print a diagram. You can modify the text in
this box any way you like, perhaps to specify a printer or printer command option you use only occasionally. IPF uses
whatever printer command is in this text box to print a diagram.

OK. Clicking this button stores the command string in the Selection text box to be used for subsequent printing. The
Plot Destination dialog box then closes. Use the Print Plot command to actually send a diagram to the printer. Diagrams
either printed or not printed are available for on-line viewing if you have a PostScript previewer on your system.

Cancel. Clicking this button closes the dialog box without changing any values. No values are passed on to IPF. You
can cancel at any time.

Help. (Not yet implemented).

Print Plot (File)

The Print Plot command sends the current, memory-resident base case/coordinate file data to the printer you have
currently designated, using the settings specified in the Plot Options command. See the Plot Options entry in this
section.

Reports (View)

Reports are data extracted from a memory-resident base case that is then formatted for output to the display. In a few
cases, data is extracted from a base case file that you specify. IPF supplies the most frequently needed reports via the
Reports dialog boxes. See figures below.

The scrolling list of report possibilities appears in the upper portion of the Reports dialog boxes. You choose one of the
report types by clicking on it. The dialog box itself then changes to reflect the kind of report you have chosen. Refer to
the figures in this section to see a few of the possibilities. Generally, once you have chosen the kind of report you want,
you then use the filter lists of Areas, Zones, Owners, etc., to narrow down the information you are looking for. Then
you click View Report to see all the bus or branch records your specified list of criteria produces, or Save or Append
Report to send the output to a file.

There is a limit of ten items selected on any filter. You can choose more than this, but only the first ten will be applied
and reported. If you want all of any filter list, just do not select anything in the list (e.g. all areas, all zones in an area,
etc.).

298 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.47: Plot Destination Dialog Box

2.10. X Window Graphical Interface (gui) 299



Interactive Power Flow

Note: The CFLOW library is available to C programmers so that more extensive reports can be extracted from IPF
data. See CFLOW C API (libcflow) for more details.

Reports Available. This scrolling list shows all reports available. You select a report by clicking on it. If the report
needs another base case file to do a comparison, a files menu will pop up so you can select the other file names.

Area. Click on the areas you want to report. Click again to unselect. Selections across Areas, Zones, Owners, Base
kV, and Types are effectively “anded” and therefore narrow the reported information.

Zone. Click on the zones you want to report. Click again to unselect. Selections across Areas, Zones, Owners, Base
kV, and Types are effectively “anded” and therefore narrow the reported information.

Owner. Click on the owners you want to report. Click again to unselect. Selections across Areas, Zones, Owners,
Base kV, and Types are effectively “anded” and therefore narrow the reported information.

Base kV. Click on the base kVs you want to select. Click again to unselect. Selections across Areas, Zones, Owners,
Base kV, and Types are effectively “anded” and therefore narrow the reported information.

Type. Click on the bus types you want to select. Click again to unselect. Selections across Areas, Zones, Owners, Base
kV, and Types are effectively “anded” and therefore narrow the reported information.

File Report Name. The file name where you want report data saved. If no name is specified, the report will be saved
in REPORTS.DAT.

View Report. Clicking this button brings up the View Report dialog box. The report data is in a scrolling text window.
See the examples below. The number of lines of output is limited. If you see “MORE” at the bottom of the report, you
will know it was truncated.

Save Report. Clicking this button saves the specified report to a file that you name in the File Report Name box. The
file will contain all lines of the report, even if there are more than can be displayed on the screen.

Append Report. Clicking this button adds the report data to an already existing file. You must supply the file name
you want to append to.

Close. Clicking this button closes the dialog box without saving any settings or information.

Search Bus Name KV. You type in this text box to go to a specific bus. The search function is case sensitive; that is,
a and A are not the same. The search function begins as soon as you type a character. Begin typing the first characters
of a bus name and the search function finds the alphabetically first bus matching the letters typed so far. For example,
A finds ACTON, AL finds ALBINA, ALD finds ALDER ST, and ALDERC finds ALDERCRT.

Clicking on a bus, or finding it with the search, causes it to be highlighted (selected). All highlighted buses will be
reported, (up to the limit of ten). To unselect a bus that you do not want reported, just click it again.

Limits. Under % Line Load you can specify a minimum percentage for reporting overloads on line and transformers
by typing a value in this text box.

Under PU Volt Relax you can relax the limit for over/under voltage reporting. The normal limits are either the gobal
ones or those specified on the area record. If these give you too many buses, you can use this text box to extend the
limit. For example, entering 0.02 will cause to be reported only buses whose voltage is more than 0.02 beyond the
limits (you cannot lower the limit by entering a negative number.)

300 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.48: Reports Dialog Box: Bus Input Data

2.10. X Window Graphical Interface (gui) 301



Interactive Power Flow

Fig. 2.10.49: Reports Dialog Box: Branch Input Data

302 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.50: Reports Dialog Box: Overloaded Lines

2.10. X Window Graphical Interface (gui) 303



Interactive Power Flow

Fig. 2.10.51: Bus Input Data Report Example

Fig. 2.10.52: Bus/Branch Input Example

Fig. 2.10.53: Bus/Branch Output Example

304 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.54: Area Interchange Report Example

2.10. X Window Graphical Interface (gui) 305



Interactive Power Flow

Fig. 2.10.55: Tie Line Summary Report Example

306 Chapter 2. Contents



Interactive Power Flow

Run CFLOW (Process)

CFLOW files are C programs using the IPF CFLOW library of routines. These routines enable you to access the base
case memory-resident data in IPF. Many CFLOW programs are designed to collect information for specialized reports
that are not built into IPF in the Reports command. See CFLOW C API (libcflow) for more information.

There are two ways to execute a CFLOW program from the GUI. Refer also to Auto CFLOW earlier in this section so
that you choose the appropriate CFLOW execution command.

The Run CFLOW command is used primarily during the development and debugging of CFLOW programs. During
this time, you use a terminal window outside of IPF as you work on getting the program logic to function properly.

Fig. 2.10.56: Run CFLOW Dialog Box

A second stage of CFLOW programming, after the basic program logic is correct, may involve directing input and output
to a separate CFLOW-program-created terminal window. This “production-grade”, user-friendly CFLOW program
may then be run by a user from within IPF with the Auto CFLOW command.

To use the Run CFLOW command:
1. In a terminal window (or other programming environment) outside of IPF, develop and debug the basic
programming logic of your CFLOW program. 2. When you are ready to test it with IPF, start up IPF in a
different terminal window. 3. Start your CFLOW program in its terminal window with a socket id number
between 1024 and 4096 on the command line. Example: cfpgm 2020 4. Return to IPF, select the Run
CFLOW command and type the same socket id number that you typed on the command line in the terminal
window. 5. Click OK to supply the socket id number to your CLFOW program and start it executing.

2.10. X Window Graphical Interface (gui) 307



Interactive Power Flow

Save (File)

The Save command permanently stores current work on a disk storage device. When you are through running a solution
on a network or editing the coordinates in a network, you usually want to keep the work. You use Save to do this. The
saved files remain available for continued modification within the current IPF session. You can save files at any time.
See figures below.

The Save dialog box is divided into five file save text boxes with associated Save buttons, and Options buttons for the
Network and Stability files. The current files that you have loaded appear in the their respective text boxes when you
first open this dialog box. If you want to change the name of a file, modify the file name by selecting and typing new
characters. You may also add a file path if you want to save the file in a different directory.

If you fail to change an existing file name to a new name, you get a dialog box asking you to confirm that you really
want to overwrite an existing file.

When you save a file, IPF does not change the file names in the Open dialog box or any file names in the Current Files
Area of the main window. These file names change only if you use the Open dialog box to load new files.

Fig. 2.10.57: Save Dialog Box

Change File. This ASCII text file is made up of data representing modifications made in the current session.

Base File. This is the main, binary format output file of IPF after it has run a solution.

Network. This ASCII text file contains the bus and branch record data comprising the current network, including any
alterations you have made.

Coordinate. This ASCII text file contains position and identification data for buses and branches in the current case.

308 Chapter 2. Contents



Interactive Power Flow

Stability. This ASCII text or binary file contains base case data that is readable by the WSCC Stability program.

Save. These Save buttons are dedicated to their respective files. Click the appropriate button(s) to save the file(s) you
want to keep.

Options. These Options buttons are dedicated to their respective files. Click the associated button to pop up a dialog
box appropriate to the Network or Stability file.

Close. Clicking this button closes the dialog box and returns you to the current IPF session.

Fig. 2.10.58: Save Overwrite Dialog Box

Overwrite. Clicking this button causes the data in the file named in the dialog box to be overwritten. This is a
replacement operation, and, thus, you may lose data if you are mistaken. Caution is urged.

Cancel. Clicking this button closes the dialog box and returns you to the main Save dialog box.

Help. (Not yet implemented.)

WSCC Dialect. Dialect refers to how values in a field are interpreted and how fields are arranged. See ipfcut and
ipfnet for more information. BPA is the default.

Ratings. These refer to line voltage ratings. Extended means that more than one rating is allowed for a line. For
example, thermal is another kind of rating. Nominal means there is just one rating allowed. Minimum means that the
lowest of extended ratings is selected for the file. Nominal is the default.

Record Size. Eighty (80) specifies that you want to limit the record size to 80 characters. WSCC, WSCC1, and PTI
dialects require this. The BPA dialect allows the 120 setting.

Close. Clicking this button closes the dialog box without writing the file to disk or changing any radio button values.

2.10. X Window Graphical Interface (gui) 309



Interactive Power Flow

Fig. 2.10.59: Save Network Options Dialog Box

310 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.60: Save Stability Options Dialog Box

2.10. X Window Graphical Interface (gui) 311



Interactive Power Flow

ASCII, Binary. The ASCII button saves the solved system data in ASCII text format, which is readable by ordinary
text editors. This file can be transferred to any other platform for input to the WSCC stability program. The Binary
button saves the same data in binary format. The binary file is less than half the size of the ASCII file, but can be used
as stability input only on the same type of computer system.

Close. Clicking this button closes the dialog box without writing the file to disk or changing any radio button values.

Solution Data Off (View)

The Solution Data Off command rewrites the display without reading and displaying the current solution data. Some-
times you may want to clear the display of extra data so that it is more readable. This command does that.

Solution Data On (View)

The Solution Data On command rewrites solution data to the display. When you do repeated solutions, the displayed
solution data does not automatically refresh in all circumstances. When you notice this, do a Solution Data On command
to read and display the latest solution data.

Solve Case (Process)

Solving a network case (or base case) causes IPF to calculate bus voltages that satisfy network constraints as they exist
within the currently resident system data. See below. In a solution scenario, the following steps are typical:

1. You make changes to the case.

2. You solve the network.

3. You examine the output.

You follow these steps repeatedly until some desired output conditions or criteria are achieved. The Error Message
dialog box gives you feedback about the progress and success of a solution attempt. See below. However, the interation
report is visible only in the terminal window behind the GUI.

Since solution voltages are stored in all base cases, you need not solve a case after initially loading one to access solution
voltage data. However, if your case is specified by a network data file, you do need to run a solution to access solution
voltage data. Thereafter, solution voltages are stored in the binary base case data.

You do not need to load a coordinate or change file to solve a case — only a base case file or network file is needed.

LTC. The radio buttons in this section select different load tap changing (LTC) transformer options. Button On enables
all LTC transformer options. RP & RQ enables only LTC transformers controlling real and imaginary power. R Only
enables only LTC transformers controlling voltage. DC Only enables only LTC transformers controlling DC converters.
Off turns all LTC transformers off.

Area Interchange. The CON radio button causes IPF to control the area interchange according to the specified con-
straints. MON does not control, but will inform you of constraint violations. The OFF radio button causes IPF to ignore
all area interchange constraints.

Phase Shifter Bias. There are two options for phase shifter bias: BPA and WSCC. Choose BPA to instruct IPF to try
to bias voltage phase angle to zero if possible for minimum losses. Choose WSCC to instruct IPF to try to bias voltage
phase angle to the initial values of the base case.

Limits. QRes is the per unit MVAR by which a bus must be perturbed to revert from a state of Qmax control to a state
of V control. Min Phase Angle is the minimum angle in degrees for which fixed-tap phase shifters are modeled as ideal
devices in the DC iterations. Delta Angle is the maximum angle adjustment in radians permitted in one iteration. Delta
Volts is the maximum voltage adjustment in per unit permitted in an iteration.

Tolerances. These values set the tolerances in per unit for convergence testing.

312 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.61: Solve Dialog Box

2.10. X Window Graphical Interface (gui) 313



Interactive Power Flow

Iteration Control. This section specifies the number of iterations IPF goes through. Specifying a number for Decoupled
Start means that you want IPF to calculate P and Q separately before it goes to the full Newton-Raphson solution method.
Values from zero (0) to ten (10) are valid. Specifying zero means that you want to skip the decoupled start. Specifying
two means that one P solution and one Q solution is done. Specifying ten means that five P and five Q solutions are
done, alternating P and Q (P, Q, P, Q, P, . . . ) before the Newton-Raphson solution begins. It is often useful to do more
DC iterations if a case has early difficulty in solving.

If a case is ‘hunting’, you can increase the number of Newton-Raphson iterations beyond the default of 30 to cause it
to keep trying. Setting it lower (say to 10) will not cause it to stop before it finds a solution, however. Maximum is 50.

Turning the Iteration Summary button on causes several thousand lines of solution process detail to be written to your
[logon].pfd file.

Base Solution. Clicking this button bypasses the solution routine, and uses the base voltages in residence to calculate
line flows.

Debug. These buttons turn on various program debug switches. See the ?? for more details.

Miscellaneous Control. If the Flat Start radio button is on, IPF will initialize all bus voltage angle values to zero
before it does a solution. This is the default. If the button is off, IPF will leave all bus voltage angles and magnitudes
unchanged from their previous solution values. This option is chosen most often for base cases that have already been
solved, and to which only minor changes have been made. The DCLP button should be on. It controls the type of
solution used for multi-terminal DC lines.

BX Voltage Bias. There are three options for BX Voltage Bias: BPA, WSCC, and VMAX. The BPA option accepts
any discrete reactance step on a BX bus when its solution voltage V lies between Vmin and Vmax. The VMAX option
attempts to find the switched reactance step such that the solution voltage is the largest which is still less than or equal
to Vmax. The WSCC option adjusts the shunt only when the voltage violates the limits.

Tap Start. Sets the LTC transformer starting tap. See ?? for a full description of how the starting tap is calculated.

VSTEPS. This controls the modeling of BQ buses which are on a Q limit.

Reset. Clicking Reset returns all radio buttons to their default values.

Solve. Clicking the Solve button causes the IPF solution algorithms to attempt a solution within the constraints of the
base case data and the Solve dialog box option settings. Solution performance varies with computer system and size
of the base case data set. Messages about the solution can be seen in the Error Messages dialog box. See below. If
there are any Fatal errors, this box will pop up on its own; otherwise you must open it in order to see the messages.
The iteration history can be observed in the terminal window where IPF was started. You can examine all of this in the
[logon].pfd file in your current directory, after you exit IPF.

Close. Clicking Close closes the dialog box without saving any changes in the settings.

2.10.31 Customizing the GUI (XGUI)

X resources are X system components managed in common by the X server. Examples of resources are colors, fonts
and their characteristics, default size and position of windows, and default file names for dialog boxes. You can change
many of these resource values in the IPF gui.

You customize IPF gui, as you do other X clients, by changing the client’s X resources file. This is the XGUI file in
your home (logon) directory. It is an ASCII text file, so you can alter it with any text editor. It is recommended that only
advanced users edit XGUI to any extent; when making changes to X resource values it is very easy to cause problems
that you won’t know how to fix. For example, if you accidentally changed some branch colors to the main window’s
background display color, you will not be able see those branches, even though they are still there! Caution is urged
when you modify X resource values and specifications.

However, there are a few items that anybody can and will probably want to change. These are covered below.

314 Chapter 2. Contents



Interactive Power Flow

Fig. 2.10.62: Solution Feedback

Note: After you make changes to the XGUI file, you may not see changes in your client (IPF) till you exit the X
Window System itself. Exiting and restarting IPF is not sufficient! You must exit IPF and the X Window System and
restart both.

XGUI Resources

As you look at the following XGUI file excerpts, note these characteristics:

• For the most part, each line specifies a resource and value for the resource.

• Each resource specification consists of a descriptive resource name followed by a colon (:)

followed by a value.
• Values may be numeric or alpha.

• Comment lines are preceded by an exclamation point (!).

• Categories of resources are grouped for reading convenience.

• The IPF resources you can change — the ones in the XGUI file — are window size and

position, fonts, colors, and file names.

2.10. X Window Graphical Interface (gui) 315



Interactive Power Flow

Changing IPF Resources

Most values for resources are easy to figure out. Others, like colors, are more difficult. Here are a few hints to get you
started. Be sure to read further in Quercia’s book, or a comparable book, for more information.

Warning: If you make a spelling mistake or the value is not correct for the resource, there are no error messages.
The resource is ignored. And, there are no X Window System facilities to help you find your error, so be careful!

Changing Open File Defaults

Although you can always find your way to the file you want to open by using the Files filter system, it is much nicer
to have IPF come up with the paths and/or names you most commonly use. Below is the section of the XGUI file
which you will want to alter in order to do this. Open XGUI with your text editor and forward search for “DEFAULT
MASKS”

! These are the DEFAULT MASKS in the open file menu.

XGUI*open_dia_command_dir_text.value: *.pcl
XGUI*open_dia_change_dir_text.value: *.chg
XGUI*open_dia_base_dir_text.value: *.bse
XGUI*open_dia_network_dir_text.value: *.net
XGUI*open_dia_coord_dir_text.value: *.cor

! These are the default filenames in the open file menu.
! Leave blank where you don't want a default.
! Don't set default filenames for both base and network!!!

XGUI*file_select_dia_command_text.value:
XGUI*file_select_dia_change_text.value:
XGUI*file_select_dia_base_text.value:
XGUI*file_select_dia_network_text.value:
XGUI*file_select_dia_coord_text.value:
###########################################################################

When you first execute IPF and select the Open command from the main window menu, some default file selections
fill the file text boxes under the Select buttons. These specify the default filters to be applied.

To change a default filter mask: For example, the default coordinate file mask in the XGUI file for the Open dialog
box is:

XGUI*open_dia_coord_dir_text.value: *.cor

This assumes that you are executing gui from the directory where the data files reside, and that you will be selecting
the coordinate file you want to load from among files in this directory that end with .cor. (The asterisk (*) is a Unix
wildcard character meaning “any arbitrary length string of characters.”

To make the filter default to a different directory, insert (for example) /archive/ipf/dat/:

XGUI*open_dia_coord_dir_text.value: /archive/ipf/dat/*.cor

Now the coordinate files selected are in the /archive/ipf/dat directory. The pathname you specify can be absolute
or relative; just be sure that it specifies a valid directory on your system.

To change a default filename mask:

316 Chapter 2. Contents



Interactive Power Flow

The default base case and coordinate file masks in the XGUI file for the Open dialog box are specified with these two
lines:

XGUI*file_select_dia_base_text.value:
XGUI*file_select_dia_coord_text.value:

The filenames are currently blank, meaning that no files are loaded when gui starts up. If during a study you are
working continuously from a particular base file, say ../base/97HS4.bse, you might want to edit XGUI to make
this file, and its associated coordinate file, load automatically every time you start gui. You then can begin work
immediately, without having to go through the Open Files menu.

To add default filenames, insert them after the :

XGUI*file_select_dia_base_text.value: ../base/97HS4.bse
XGUI*file_select_dia_coord_text.value: /archive/ipf/dat/volts.cor

These two files will be automatically loaded for you. If you look at the Open Files menu, you will see their names in
the boxes to the right of the filter boxes.

Warning: Do not specify both a base file and a network file name. These are mutually exclusive!

Changing Printer Defaults

You can specify your default printer and also enter a list of others you may want to choose from. These are right at the
top of the XGUI file.

XGUI*printer_selection_box*textstring: print

Change “print” to whatever string you will want to use most often.

The section just below this is where you put in the other print strings that you want to appear in the printer list.

Changing Window Position and Size

Windows are positioned on the screen by specifying pixel locations. X is the horizontal dimension. Y is the vertical
dimension. The position x,y = (0,0) is the upper left corner of the screen. (XGUI.x, XGUI.y) represents the upper
left-hand corner of the main window of IPF.

To change the main window default position:
The default in the XGUI file is::

XGUI.x: 127
XGUI.y: 0

Change the 0 to a 127::

XGUI.x: 127
XGUI.y: 127

Now the upper left-hand corner of the main window appears 127 pixels down and to the right of the 0,0 screen pixel
position in the extreme upper left-hand corner of the screen.

To change the main window default size:

2.10. X Window Graphical Interface (gui) 317



Interactive Power Flow

The default in the XGUI file is::

XGUI.width: 600
XGUI.height: 550

Change the 550 to a 600::

XGUI.width: 600
XGUI.height: 600

Now the IPF main window will be square. Other windows and dialog boxes in XGUI work similarly.

Changing Fonts

The X Window System for your computer comes with a standard set of fonts. Commonly used fonts such as Courier (a
typewriter-like font), Times (a serif, “newspaper” font), and Helvetica (a common, sans serif font) are included. Ask
your system administrator about the X fonts available on your computer. Each size, shape, and kind of font has a unique
name. Here is the name of one of IPF’s default fonts::

-*-Courier-Bold-R-*--*-100-*-*-*-*-ISO8859-1

This X font name specifies Courier bold with a normal slant (R) of size 10 points. Its International Standards Orga-
nization character set registry identification is ISO8851-1. The asterisks denote “don’t care” states for the other font
parameters such as, for example, foundry (who made the font) and pixel size.

To change a default font:
For example, the default font in the XGUI file for descriptive IPF text in the windows and dialog boxes is::

XGUI*XmText.fontList:*-Courier-Bold-R-*--*-100-*-*-*-*-ISO8859-1

Change the Courier to Times:

XGUI*XmText.fontList:-Times-Bold-R-–-100----*-ISO8859-1

Now the descriptive text is a 10 point bold Times of a regular slant.

Changing Colors

X color values can be specified as regular names such as blue, red, yellow, magenta, slate blue, sky blue, navy blue,
etc., or as hexadecimal digits. Ask your system administrator for a list of all named standard colors because this is much
easier to deal with than figuring out hexadecimal color values. However, here is a quick explanation of the hexadecimal
color specification system.

Colors are specified in the RGB (Red-Green-Blue) color system. The RGB hex numbers have 12 digits. The first four
stand for the Red component. The middle four stand for the Green component. And the last four stand for the Blue
component. (Reading left to right, of course.) ffff hex stands for fully saturated red if it is in the first position. 8000
hex stands for a half way saturated red (called “red4” in X). 0000 hex stands for no red at all, which would be black.
The green and blue work analogously. Thus, ffffffffffff hex stands for pure white, and 000000000000 hex stands
for pure black. To get the color you want, you need to play with different values of hex numbers in the appropriate
Red-Green-Blue positions since the RGB intensities are mixed to render one color.

To change a default color: For example, the default color in the XGUI file for the 500 kV branches as shown in the
branch color key of the IPF main window is::

318 Chapter 2. Contents



Interactive Power Flow

XGUI*kv_500_label.background: #ffffcccc0000

Note the hexadecimal color value specification. This default color is a gold-looking color.

Use a color name specification and change the #ffffcccc0000 to yellow::

XGUI*kv_500_label.background: yellow

Now the 500kV branches and the branch color key shows up as pure yellow.

Changing Default File Names

When you first execute IPF and select the Open command from the main window menu, some default file names fill
some of the file text boxes. You can specify your own valid file names or file name masks in the XGUI file.

To change a default file mask:
For example, the default coordinate file mask in the XGUI file for the Open dialog box is::

XGUI*open_dia_coord_dir_text.value: /shr5/all/ipf/dat/*.cor

The *.cor selects just the coordinate files in the given directory (if they all end with .cor, of course). (The asterisk (
* ) is a UNIX wildcard character meaning “any arbitrary length string of characters.””)

Change the /shr5/all to /archive/year1992::

XGUI*open_dia_coord_dir_text.value: /archive/year1992/ipf/dat/*.cor

Now the coordinate files selected are in the /archive/year1992/ipf/dat directory.

You can change any part of the file name, of course, just so long as the file name is a valid file name for your operating
system.

2.11 CFLOW C API (libcflow)

2.11.1 Overview

CLFOW is a C Application Programming Interface (API) for IPF. The library name is libcflow. With CFLOW, users
can access the bus and branch data within the power flow data structures in a highly flexible way. Once data is retrieved
from the IPF “data engine”, it can be manipulated within the user-written C program and either output to a file, screen,
or plotter, or sent back to the IPF “data engine” for further processing. A CFLOW program is a totally separate process
running concurrently with the “powerflow solution and data server” process and communicates with it via an Inter
Process Communication (IPC) protocol that uses sockets.

In order to use CFLOW, you must have some knowledge of the C language and have a C compiler. Once a CFLOW
program has been written, compiled, linked, and debugged, it is stored as an executable which can be run from the
command line or from the IPF GUI using the “PROCESS – CFLOW” menu option.

CFLOW is completely compatible with ANSI C and portable to all environments that have an ANSI C compiler.

2.11. CFLOW C API (libcflow) 319



Interactive Power Flow

History

CFLOW was written to perform analogous functions to the WSCC’s Computationally Oriented Programming Envi-
ronment (COPE) language. COPE was a standalone language integrated with the WSCC equivalent of BPA’s IPF, the
Interactive Powerflow System (IPS). CFLOW is a library of C language functions, that that effectively wrap the ipsrv
server component of IPF. This means it operates as a “remote procedure call” library. All the power of the C language is
available to CFLOW users, whereas COPE users are limited to the COPE language and environment. Another example
of similar functionality is PTI’s IPLAN which is interpreted similar to the way COPE is. CFLOW is more powerful
and flexible than COPE.

Audience

This documentation assumes that you are a beginning to mid-level C language programmer. This means you should
have successfully written programs in some languages. If you have some experience with Fortran, BASIC, Pascal, or
C it will be even easier for you to grasp. You need not have written complex programs, simply programs such as you
would be required to complete in an undergraduate college programming course. If you already know C, you are ready
to write CFLOW programs. If not, you should probably take a class, invest in a computer tutorial course, and/or spend
some time with a good C language book.

The following C programming books are recommended for those users needing introductory or refresher information:

• Brakakati, Nabajyoti. The Waite Group’s Microsoft C Bible. Howard W. Sams & Company, 1988. This MS-DOS
environment reference book clearly describes ANSI C compatibility for each function.

• Harbison, Samuel P. and Guy L. Steele. C: A Reference Manual. 3rd ed. Prentice-Hall, 1991. This book
shows ANSI C facilities contrasted with traditional or alternate facilities. If you are well acquainted with C
programming, but want to make sure your program complies with ANSI C, look here.

• Johnsonbaugh, Richard and Martin Kalin. Applications Programming in ANSI C. MacMillan, 1990. This is a
textbook used in beginning undergraduate college courses.

• Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. Second Edition. Prentice-Hall,
1988. This is the standard book for learning the language, updated to a second edition. Experienced programmers
will do well with this book. Beginners should use Kochan’s book.

• Kernighan, Brian W. and Rob Pike. The UNIX Programming Environment. Prentice-Hall, 1984. This book
describes how to develop programs in the UNIX operating system.

• Kochan, Stephen G. Programming in ANSI C. Howard W. Sams & Company, 1988. This book is a comprehensive
tutorial for the beginning programmer.

• Plauger, P. J. The Standard C Library. Prentice-Hall, 1992. This book shows you how to use the standard ANSI
and ISO C library functions. It provides code examples for implementing many of the library functions.

2.11.2 Creating a Program

CFLOW is a library of functions that a C program can link to (with an object file linker) to access IPF data and control
IPF execution. The program you write is a C program. CFLOW source programs are created using a text editor. The
program lines can be entered in “free format,” since there are no column restrictions like Fortran.

Indentation is recommended when designing nested logical constructs to reduce logic errors and enhance readability.
For example:

if(condition) {/* beginning of first "if" block */
if(condition) {/* beginning of second "if" block */
statement;

(continues on next page)

320 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

statement;
}/* end of second "if" block */
statement;
statement;

}/* end of first "if" block */
statement;

Include the CFLOW header file, called cflowlib.h, in each file that calls a CFLOW function.

2.11.3 Running a CFLOW Program

From the command line

To run your CFLOW program from the command line, simply run the program as you would any other program from
a terminal/command prompt. For example, the following could be used:

my_cflow_program [ arg1 ] [ arg2 ] ...

The library will take care of launching the ipfsrv program and establishing a connection. There are several optional
command line arguments that are assumed by every program that uses the libcflow library. These options must
precede any of the arguments for the CFLOW program.:

-n noserver, do not launch ipfsrv

-w <wait time> max wait time for socket connect (default of 30)

-c <socket> socket number to use if other than default of

From the GUI

There are two ways to execute a CFLOW program from the GUI: Either in its own terminal window, or in the same
terminal window that the GUI is running in (background). CFLOW programs that are run in the same terminal window
as the GUI that read/write to stdin or stdout (i.e. use readln or printf) have their I/O intermixed in the same terminal
window as the GUI and IPF server. The background mode should usually only be used for programs that generate a
report or other output to a file.

To run a CFLOW program from the GUI, you start up the GUI, and set up whatever conditions are required for your
program to work, such as loading and solving a case, if the program is designed to report on a currently loaded case.
Then select Process - Run CFLOW. You will get a file selection window. Double-click on a directory name, or change
the filter field and click the Filter button, to change the file list. When you see the file you want to run (your executable
CFLOW program), select it, and it will appear in the Selection field. Select either Window (default) or Background,
and, if your program has command line arguments, type these into the CFLOW Program Arguments field. Then click
the Launch CFLOW button. The Wait field (default 30 seconds) is provided just in case your program takes longer than
30 seconds to start up. The wait time is the length of time that the GUI/ipfsrv will wait for the CFLOW program to
start up and establish a socket (inter-process communication) connection. The value can be set from 15 to 300 seconds.
If the CFLOW program has not connected within the wait time, then the CFLOW run is aborted and control is returned
to the GUI.

The program is run synchronously. This means that you cannot use the GUI until the CFLOW program is finished
running. If the CFLOW program fails, control is returned to the GUI. However, if the CFLOW program hangs (as in an
infinite loop), you need to kill the CFLOW process through operating system resources. (For example, on UNIX this
can be done with the kill command and on VMS this can be done with the stop process command.) See your computer
system documentation or your system administrator for help.

2.11. CFLOW C API (libcflow) 321



Interactive Power Flow

When the program completes, the CFLOW window goes away and control returns to the GUI. You can then load a
different file, or make other changes, and select Process - Run CFLOW again to rerun. The scripts run_cflow_win
(window) and run_cflow_bg (background) are used to run the CFLOW program. These scripts can be customized for
your system.

From ipfbat

For batch, also called background or terminal window interactive processing, the ipfbat program is provided. This
program reads a control file rather than connecting to and receiving commands from the GUI process.

A CFLOW program can be run by including the following command in the control file:

/CFLOW, PROGRAM =
[ directory path ] < CFLOW executable file or script file >
[ , WINDOW ]
[ , WAIT = < max wait time for socket connect > ]
[ , ARGS = < command line arguments for the specified program > ]

The brackets ([ ]) denote optional items. The command is free format with the restriction that any “word” (like the
[ path ] < file > ) must be all on the same line (not continued on the next line) with no imbedded blanks or any of the
following: “,=n”. On a UNIX system, for example, you can use the following:

/CFLOW, PROGRAM = my_cflow_program

This “launches” the program if it is in your directory search path. ARGS = is required only if the CFLOW program
requires command line arguments. Without the WINDOW option, any I/O from the CFLOW program goes to standard
input or standard output, and will be to and from the same terminal window that the ipfbat program is run from
(intermixed with any I/O from the ipfbat program). The scripts run_cflow_win (window) and run_cflow_bg
(background) are use to run the CFLOW program. These scripts can be customized for your system.

2.11.4 Debugging

Use the standard system debugger for your computer system to debug CFLOW C programs. Although it is possible
to do debugging using the GUI/ipfsrv or the ipfbat programs, it is recommended that you debug by running your
CFLOW program from the command line.

If your program expects some setup (i.e. a case already loaded and solved), because your program is used like a
subroutine that generates a report or other output based on whatever is currently there, then for debugging purposes,
you can create a function that does the setup (e.g. load base, apply changes, solve) and call that function at the beginning
of your program. When the program is debugged, you can “comment out” the call to the setup function.

The pf_cflow_init() function uses the C library function system() to launch the ipfsrv program with the output redi-
rected to a file. There is a default wait (time out) of 30 seconds for the ipfsrv program to extablish a socket connection,
but this can be increased, if needed, to up to 300 seconds with the -w option. See running From the command line
above. In general, when debugging, you want to “step over” (versus “step into”) the pf_cflow_init() function, however,
if you decide to step through the function, be aware that part of the code has the time out in effect and will cause a
“failed connect” to occur if you proceed too leisurely.

If you experience problems with debugging that you suspect are related to the “system” call that launches the ipfsrv
program, you can use the -n (noserver) option as follows to debug from two windows:

In one window run your CFLOW program.:

my_cflow_program -n -w 300 [ arg1 ] [ ... ]

322 Chapter 2. Contents



Interactive Power Flow

Wait for the log message using socket nnnn (this will happen when the pf_cflow_init() function is executed), then
in another window run the ipfsrv program.:

ipfsrv -socket nnnn

where “nnnn” is the same as what the CFLOW program stated. The socket connection should happen within a second.

You can then debug your program in one window while the ipfsrv program runs in the other.

2.11.5 Functions Overview

The CFLOW library is a set of functions, written in the C language, that allows access to IPF data. Behind the scenes,
the routines communicate with the IPF program via an interprocess communication channel known as a socket (similar
to a pipe or stream). The routines are organized, as much as possible, as data access routines, since the powerflow
program is playing the role of data store for the power flow model and solution as well as compute “server.”

There are four major classes of functions:

• Simple IPF “command” functions.

• Record-oriented IPF functions.

• Buffer-oriented IPF “command” functions.

• Utility functions and local data translation.

The library currently accesses only the Powerflow program. In the future, a similar approach could be used to provide
a CFLOW interface for other programs. The various functions are documented in Chapter 4. All of those that access
Powerflow start with pf_. All functions return a non-zero integer for an error condition and a zero for successful
completion.

Simple Command Functions

Examples of simple functions are pf_area_of_zone, pf_del_zone, pf_rename_area, pf_rename_zone, and
pf_rename_bus. These functions perform an operation that requires little or no input data, other than a command,
and usually return only a status, or a single piece of data such as pf_area_of_zone does.

Record Oriented Functions

Examples of record-oriented functions are pf_rec_bus and pf_rec_cbus. These functions use C language structures
to manipulate a record. Both generic and record-type specific structure definitions are provided, so that field names
specific to the record type can be used for a little better “self-documenting” code. For example, the variable containing
TAP2 for a transformer contains B2 for an E type line, and the minimum phase shift for a type RM regulating phase
shifter. This same variable can be accessed by using the names r.i.branch.tap2, r.i.pf_E.b2, and r.i.pf_RM.
min_phase_shift_deg. The table below gives comlete details. The columns represent the input values that are
defined for branch records. In the table, “N/A” means that the data item does not apply to that record type; “-” means
the variable name is the same as the generic variable name (left most column). See the Record Formats section for
descriptions of the various branch records.

2.11. CFLOW C API (libcflow) 323



Interactive Power Flow

Generic
branch
vari-
able
name
and
type

E L T TP R,RN,RQ,RVRM,RP RZ LD LM

char
type[3]

E L T TP R,RN.RQ,RVRM,RP RZ LD LM

char
owner[4]

• • • • • • • • •

char
bus1_name[9]

• • • • • • • • •

float
bus1_kv

• • • • • • • • •

int
meter

• • • • var_tap_sidevar_tap_sidevar_tap_side • •

char
bus2_name[9]

• • • • • • • • •

float
bus2_kv

• • • • • • • • •

char
ckt_id

• • • • N/A N/A • I_or_R_controlN/A

int sec-
tion

• • • • N/A N/A • N/A N/A

float to-
tal_rating

• • • • N/A N/A I_rate • •

int
num_ckts

• • • • num_taps num_taps rani_type N/A N/A

float r • • • • N/A N/A Pc_max R R

float x • • • • N/A N/A Pc_min L_mh L_mh

float g g1 • • • N/A N/A Xij_max C_uf C_uf

float b b1 • • • N/A N/A Xij_min P_sched N/A

float
tap1

g2 miles tap1 phase_shift_degmax_tap max_phase_shift_degBis_max V_sched N/A

float
tap2

b2 N/A tap2 tap2 min_tap min_phase_shift_degBis_min miles miles

float al-
pha_N_deg

N/A N/A N/A N/A N/A N/A N/A • N/A

float
gamma_0_deg

N/A N/A N/A N/A N/A N/A N/A • N/A

char de-
scrip[9]

N/A de-
scrip[9]

N/A N/A rmt_bus_namermt_bus_nameN/A N/A N/A

char
date_in[4]

• • • • • • N/A N/A •

char
date_out[4]

• • • • • • N/A N/A •

float
ther-
mal_rating

• • • • rmt_bus_kvrmt_bus_kvN/A • •

float
bottle-
neck_rating

• • • • Qmax Pmax N/A • •

float
emer-
gency
_rating

N/A N/A • • Qmin Pmin N/A N/A N/A

324 Chapter 2. Contents



Interactive Power Flow

The functions all use an action code to specify what is to be done with the record, such as D for delete, F2 to retrieve
the first branch record associated with two named buses, and O to retrieve solution (output) data for a bus or branch.

Buffer Oriented Operations

The buffer-oriented operations are all accessed through one function: pf_cflow_ipc. This function sends a buffer
to Powerflow containing a command, command options, and usually input data. A buffer is returned that contains the
results of the request. Any command that is in the IPF Advanced User Manual can be put in the buffer, with records
separated by the ’n’ (linefeed) character. Much of the data sent and received in the buffers is WSCC-formatted data.

Utility Functions

Most of the utility functions are provided to form an “abstraction layer” between your program logic and WSCC for-
matted ascii records. There are functions to translate between the C structures and WSCC ascii records, as well as
functions to initialize the C structures.

2.11.6 Notes

Below are a few notes, reminders, and definitions relating to the C language and the CFLOW library functions, for your
convenience.

Strings

Many of the function parameters, such as bus names and action codes, are described as strings. In C, the technical
definition of a string is as follows: An array of characters, with a null terminator (ASCII character \0) in the element
following the last valid character.

The library functions, like most C library functions, expect the strings you supply to conform to this definition. The
easiest way is to enclose the value you want in double quotes (e.g. "AMBROSIA"). You can also store a value like this
when you initially declare the character array.

Note: When you declare a char array, remember to always size it one larger than you need to store your actual string,
so there is room for the null character!

However, you cannot put this value in an array with an assignment statement (name = "AMBROSIA" is illegal). To
store a string in a character array, use the standard C strcpy or strncpy function.

A single character can be placed in one element of a character array by enclosing it in single quotes (name[0] = 'A';
is a legal C assignment statement). If you do this, be sure to store a null in the last character (name[8] = '\0';).

Arrays

In C, an array dimension is declared to be the actual number of elements in the array:

char name[9]; /* Sized to hold an 8-character bus name, plus a null.*/

But when you reference the array elements, the indices run from zero to one less than the declared dimension. In the
example above, name[0] has the first character of the bus name; name[7] has the last character, and name[8], which
is the last element of the array, contains a null.

2.11. CFLOW C API (libcflow) 325



Interactive Power Flow

Function Types

If a function is declared as void, then no return value is expected, and it may be invoked without a place being provided
to receive the returned value. Example:

pf_init_bus( &b, “B”, “AMBROSIA”, 230.0 );

Most of the CFLOW functions are int, meaning that they return an integer value, which is usually zero for success and
non-zero for any kind of error. These must be called in some way which is compatible with the name of the function
being a variable with a value. Example:

int error;
error = pf_rec_bus( &b, “G” );

Main

Your main program must have the standard arguments int and char **:

int main ( int argc, char *argv[] )
{
...

}

You cannot merely call it “main”, as you may have done for programs in a C class, or which you will see as examples
in the books. Look at the sample CFLOW programs for guidance.

Includes

In most program you write, you at least need the standard C headers stdio.h and string.h, and also the CFLOW
library header, cflowlib.h. This is done with a preprocessor statement: #include <stdio.h> for libraries in the
standard C include directory. #include "cflowlib.h" for libraries in some other directory.

Linking

Your CFLOW program can be compiled by itself, but in order to execute, it must be linked with the cflow library,
libcflow.a. The simplest way to do this (on a Unix system) is to use something like CMake or a Makefile. Look at
the examples in this project for how to do this.

Buffers

CFLOW communicates with ipfsrv by using buffers which are passed back and forth (see the next section, Global
Buffers, for detailed information). If you want to see what is in the buffers, set the variable cf_debug to one. As long
as it has this value, the contents of every buffer passed will be displayed in the terminal window. Since this output will
go by so fast you can’t read it, and it can be very voluminous, you will want to limit the number of buffers actually
displayed to the ones you are interested in. Set cf_debug back to zero to turn off the display.

326 Chapter 2. Contents



Interactive Power Flow

Languages

CFLOW routines do not have to be written in C, except for the main program. If you are adept at the intricacies of
calling C routines from a Fortran program and vice versa, you can write your main processing and reporting routines in
Fortran, or use code you already have. In general, it will be easier to write a C program to perform the function, rather
than trying to retrofit.

2.11.7 Simple Report Example

The ANSI C program listed below was derived from a COPE program. This program illustrates how the CFLOW
library and ANSI standard C may accomplish many of the same tasks as COPE programs. Detailed discussion follows
the program code. The following program outputs a Shunt Reactive Summary report to the screen. A loaded base case
in the Powerflow “data engine” provides the data for the report.

/*
* The following is an example of a COPE program, re-written
* in the "C" programming language using the CFLOW library.
* It does a Shunt Reactive Summary report on the currently
* loaded case, for a user-entered zone. Output to gui T/W.
*/

#include <stdio.h>
#include <string.h>
/* use this form if "cflowlib.h" is in a "user
library" include area. Your compile procedure
should use the "-I or /I" option that specifies
the path to "cflowlib.h" */
#include "cflowlib.h"

int readln( char *s, int lim ) /* Function to read input from the T/W. */
{

int i;
char c;
for ( i=0; i < lim - 1 && ( c = getchar() ) != EOF && c != '\n'; ++i )

s[i] = c;
s[i] = '\0';
return i;
}
main( int argc, char *argv[] ) /* Main Program */
{
pf_rec r; /* CFLOW structure */
char zn[3];
int error, status ;
float q_avail_react_tot, q_avail_cap_tot,
q_used_react_tot, q_used_cap_tot,
q_unused_react_tot, q_unused_cap_tot,
q_unsched_react_tot, q_unsched_cap_tot;
pf_cflow_init( argc, argv ); /* IPC connection function, required. */
/* Ask user for zone to report */
printf("Enter Zone to report Shunt Reactive Summary > ");
readln( zn, sizeof(zn) );
zn[sizeof(zn)] = '\0';

(continues on next page)

2.11. CFLOW C API (libcflow) 327



Interactive Power Flow

(continued from previous page)

printf("\n\n Shunt Reactive Summary for Zone %s \n\n",zn);
printf(" Avail_caps Avail_reac Used_caps Used_reac Unus_caps Unus_rx Unsch_caps
Unsch_rx\n\n");
q_avail_react_tot = q_avail_cap_tot =
q_used_react_tot = q_used_cap_tot =
q_unused_react_tot = q_unused_cap_tot =
q_unsched_react_tot = q_unsched_cap_tot = 0.0;
/* Compute zone quantities */
error = pf_rec_bus( &r, "F" ); /* get first bus in case */
status = pf_rec_bus( &r, "O" ); /* get solution data for first bus */
while ( !error && !status ) { /* Loop through all buses in case */
if ( strcmp(r.i.ACbus.zone, zn )==0)
{ /* If bus is in the zone */
q_avail_react_tot += r.s.ACbus.Bshunt_sch_rx;
q_used_react_tot += r.s.ACbus.Bshunt_used_rx;
q_avail_cap_tot += r.s.ACbus.Bshunt_sch_cap;
q_used_cap_tot += r.s.ACbus.Bshunt_used_cap;
if( r.s.ACbus.Qunsch < 0 ) {
q_unsched_react_tot -= r.s.ACbus.Qunsch;
}
else
{
q_unsched_cap_tot += r.s.ACbus.Qunsch;
}
}
error = pf_rec_bus( &r, "N" ); /* get next bus in case */
status = pf_rec_bus( &r, "O" ); /* get solution data for next bus */
}
q_unused_react_tot = q_avail_react_tot - q_used_react_tot;
q_unused_cap_tot = q_avail_cap_tot - q_used_cap_tot;
/* Print zone summary */
printf(" %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f \n\n",
q_avail_react_tot, q_avail_cap_tot,
q_used_react_tot, q_used_cap_tot,
q_unused_react_tot, q_unused_cap_tot,
q_unsched_react_tot, q_unsched_cap_tot );
pf_cflow_exit(); /* Drop IPC connection */

C programs usually have header files “included” somewhere near the beginning after a comment header. Header files
may be standard or programmer-created. One standard header file required is stdio.h if the program does any I/O
operations. Various macros and definitions make up these files. string.h is also a standard header file. cflowlib.h is a
special header file for the CFLOW library. All CFLOW programs must include this file.

All C programs must include a call to main, which is where program execution starts.

Immediately after main follow a series of declarations of variables local to main. The variable r is a special CFLOW
structure of type pf_rec. This is the basic powerflow record structure used to retrieve both input and output data for all
types of records.

A three character array representing a two character bus zone code follows. Note that character arrays storing strings
should always be declared one byte larger than needed to account for the terminating NULL (\0).) Two integer vari-
ables, error and status, are declared next. These will be used to store the return value from calls to pf_rec_bus. The
variables to collect the zone total quantities are declared as float (single precision real numbers).

pf_cflow_init is called to establish the IPC socket connection, which the program will use to communicate with either

328 Chapter 2. Contents



Interactive Power Flow

the ipfsrv or ipfbat programs.

We print a question to the terminal window, and use readln to retrieve the user selection of a zone to report on, and
make sure the string is null-terminated by storing a null in the last element of the array (remember that C indexes array
elements from 0 to n-1). The input zone id is echoed back in the heading of the report, and the floating point variables
are initialized.

Now we begin the actual processing. The first bus record is retrieved by calling pf_rec_bus with an action code of
“F” (for First). This stores the input record data for the first bus in the currently loaded system in the local structure
r. But we want the output (solution) quantities. So we call pf_rec_bus again, with action code “O” (for Output). The
necessary id fields have been stored in r by the first call, and these are passed back to ipfsrv so it knows what bus you
want output values for.

A while loop now executes. The purpose of the while loop is to sequentially access bus records and gather floating
point data related to the shunt reactance. pf_rec_bus initially used action code “F” to go to the first bus record in the
base case. After this, pf_rec_bus uses action code “N” to retrieve the next bus record. When the end of all records has
been reached, pf_rec_bus returns a -1, which causes the while loop to terminate.

Since only records from the user-specified zone are desired in this program, a test is first performed on each bus record
to see if it has the correct zone. The program could be made more efficient by not bothering to retrieve output values
except for the right buses; however it has been left this way for simplicity in providing an example. If the bus is in the
right zone, then the appropriate floating point values are totaled in assignment statements. This program assumes that
the zone has no DC buses; if there are any, then the DC solution variables stored in the same fields as the AC shunt
would give you weird results, to say the least! Of course, it would be possible to also test for bus type, along with
testing for the zone, in order to avoid this problem.

When the loop terminates, the reactance totals are printed to the screen with printf statements formatted for decimal
output. Then we exit, and release the socket connection, by calling pf_cflow_exit.

2.11.8 Standard Line Flow Summary Example

The slfs.c program was translated from a COPE procedure used by WSCC Technical Staff. It reads an input data file
of headings and branches to be reported, looks these up in the currently loaded solved system, and sends the report to
a file. The report includes the input headings, and group totals where called for, in an attractive format for printing.

This is what the input data file looks like. Heading lines are those with neither ‘LIN’ or ‘TOT’ on them. They are
printed as encountered. LIN’ cards identify a branch to be reported; ‘TOT’ cards call for a total to be printed. The “2”
in column 5 indicates that the reverse flow is to be reported.:

CANADA AND NORTHWEST
--------------------
1. Alberta - British Columbia

LIN LANGDON 500 CBK500 500
LIN LNGDN500 500 CRANBROK 500
LIN LNGDN500 500 CBK500 500
LIN 2 POCA TAP 138 EMC138 138
TOTAL
2. Canada - Northwest

LIN ING500 500 CUSTER W 500
LIN INGLEDOW 500 CUSTER W 500
LIN 2 NLY230 230 BOUNDARY 230
LIN 2 NELWAY 230 BOUNDARY 230
LIN 2 NLYPHS 230 BOUNDARY 230
LIN SELPHS-1 230 MARSHALL 230
LIN SELPHS-2 230 MARSHALL 230

(continues on next page)

2.11. CFLOW C API (libcflow) 329



Interactive Power Flow

(continued from previous page)

LIN SELPHS-1 230 BEACON N 230
LIN SELPHS-2 230 BEACON S 230
TOTAL
3. Northwest - California
LIN MALIN 500 ROUND MT500.
LIN DELTA 115 CASCADE 115.
LIN CAPTJACK 500 OLINDA 500.
TOTAL
4. Celilo - Sylmar
LIN 2 SYLMAR2I106. SYLMARLA230.
LIN 2 SYLMAR1I106. SYLMARLA230.
LIN 2 SYLMAR2R106. SYLMARLA230.
LIN 2 SYLMAR1R106. SYLMARLA230.
TOTAL
NORTHEAST
---------
1. MPC High Line
LIN 2 CONRAD 115 CUT BANK115.
LIN GT FALLS 161 HAVRE 161.

.

.

.

The program slfs.c prompts the user for the output file name to put the line flow listing in. The input file name is
hard-coded in the program.

/* slfs.c
This CFLOW procedure looks up flows and creates a report
of flows between buses as listed in an input data file.
Before the CFLOW procedure is called, a solved power flow case
must be resident in the powerflow server.
This CFLOW procedure prompts the user for two file names:
the output file name to put the line flow listing in,
the input file name of a file to get line data from.
The input file has a LIN card for each branch to be monitored.
If there are multiple lines between the same buses, slfs.c
picks up all lines. A TOT card flags printing of total flow

since the last TOT card (or since the beginning). Input lines
without either LIN or TOT are printed directly to the output file.
Each data card has LIN in columns 1-3 and the Branch identifiers
in columns 7 to 31. First Bus name and KV in columns 7-18,
Second bus name and KV in columns 20-31. Column 5 is a flag to
tell slfs.c whether to use the "Pin" or "Pout" data quantity for
the total flow. If the flag is "2", then "Pout" is used; otherwise
"Pin" is used. The flag corresponds to the metering point.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cflowlib.h"
/* cf_debug = 1; /* Put this where you want the buffers displayed,for debugging */
int readln( char *s, int lim ) /* Read a line from the terminal input */

(continues on next page)

330 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

{
int i;
char c;
for ( i=0; i < lim - 1 && ( c = getchar() ) != EOF && c != '\n'; ++i )

s[i] = c;
s[i] = '\0';
return i;

}
int freadln( FILE *fp, char *s, int lim ) /* Read a line from a file */
{

int i;
char c;
for ( i=0; i < lim - 1 && ( c = getc( fp ) ) != EOF && c != '\n'; ++i )

s[i] = c;
s[i] = '\0';
return i;

}
main ( int argc, char *argv[] )
{

pf_comments comments; /* CFLOW structure */
pf_rec r; /* CFLOW structure */
FILE *out, *dat;
char card[82], cout[31];
char skv1[5], skv2[5];
char direc;
int error, lin, tot;
float brflow, totalflow = 0.0;
float kv1, kv2;
pf_cflow_init( argc, argv );
/* Open the input file. This could be prompted for, but Don says
he always uses the same input file, which will NOT be in the
execution directory,so full pathname is supplied.
If the file cannot be opened, the program terminates
*/

dat=fopen( "/home/ipf/cflow_progs/slfs.dat", "r" );
if ( dat == NULL ) {

printf("Can't open data file\n");
exit(0);

}
/* Prompt the user for the output file name, and open the file.
Normally, file will be created in the execution directory,
so cout is only 30 characters.
If the file cannot be opened, the program terminates.
*/
printf("Enter output file name > ");
readln( cout, sizeof(cout) );
printf("\n");
out=fopen( cout, "w" );
if ( out == NULL ) {

printf("Can't open output file\n");
exit(0);

}

(continues on next page)

2.11. CFLOW C API (libcflow) 331



Interactive Power Flow

(continued from previous page)

/* Retrieve caseid and description, and print heading */
pf_rec_comments( &comments, "G" );
fprintf(out,"\n%s\n\n", &comments.h[0][33] );
totalflow = 0.0;
/* Loop for every line in the data file
Read a line from the data file, if not "LIN" or "TOT" then
print the text as is.
If "LIN" retrieve and print line data.
If "TOT" print totalflow and reinitialize it.
*/
/* "C" array indices start at zero; below we use explicit starting index
of 1 for "card" character array (string), so that column numbers
will match array indices.
*/
while ( freadln( dat, &card[1], sizeof( card ) - 1 ) )
{

int head;

lin = (!( strncmp( &card[1], "LIN", 3 )) );
tot = (!( strncmp( &card[1], "TOT", 3 )) );
head = lin + tot; /* = 0 if not either */
if (head == 0) /* Heading card - print the text */
{

fprintf(out,"%s\n",&card[1]); /* Print from col. 1 - 1st char. is NULL! */
} /* end if Heading */
if (lin) /* LIN data card - process line */
{

/* Using CFLOW pf_init_branch function; bus kv’s must be real numbers */
strncpy(skv1, &card[15], sizeof(skv1));
skv1[4] = '\0';
strncpy(skv2, &card[28], sizeof(skv2));
skv2[4] = '\0';
kv1 = atof(skv1);
kv2 = atof(skv2);

/* pf_init_branch stores the passed ID fields in r, and zeroes all the other␣
→˓fields */

pf_init_branch ( &r, "L", &card[7], kv1, &card[20],kv2, "*", 0);

/* Call CFLOW pf_rec_branch to retrieve output solution data */
error = pf_rec_branch( &r, "O" );
/* If branch not found, do not print anything. This happens quite often,␣

→˓since
the input file is canned, and used on all cases. */
if ( error ) {

continue; /* This sends it back to the ’while’ */
}
/* Otherwise, retrieve flows. r is defined in this pgm as a structure of␣

→˓type pf_rec
i indicates input data, s indicates output data. See cflowlib.h for␣

→˓definitions.
*/

(continues on next page)

332 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

direc = card[5]; /* Meter flag for Pin or Pout */
if ( direc == '2' )
{ /* meter at second bus */

brflow = r.s.branch.Pout;
totalflow += brflow;
fprintf( out,"%s - %s(M) %s kV num ckts %d %7.1f\n",

r.i.branch.bus1_name, r.i.branch.bus2_name, skv2,
r.s.branch.num_ckt, brflow );

}
else /* meter at first bus */
{

brflow = r.s.branch.Pin;
totalflow += brflow;
fprintf( out,"%s(M) - %s %s kV num ckts %d %7.1f \n",

r.i.branch.bus1_name, r.i.branch.bus2_name, skv2,
r.s.branch.num_ckt, brflow );

}
} /* end if LIN */
if (tot) /* TOT data card */
{

fprintf(out,
"\n Total flow is %7.1f \n\n",totalflow);

totalflow = 0.0 ;
} /* end else if TOT */

} /* end while */
pf_cflow_exit();

} /* end main */

Note that both input values (r.i.branch.) and output values (r.s.branch.) are reported. The “i” stands for “input” and the
“s” stands for “solution”.

The variable cf_debug is provided for convenience in debugging a CFLOW program. When it is “true” (set non-zero),
all the input and output buffers will be dumped to the terminal window, so you can see exactly what your program is
sending and getting back. Since this can be very voluminous, you would only want to turn it on in the area where you
are having a problem.

2.11.9 increm Program

The increm program was translated from a COPE procedure used by WSCC Technical Staff. It reads an input data file
of branches to be reported, and another file of buses to change generation on. The starting case is hard-coded, and so
is the bus that you want to study power transfer from, in this case GADSBY 3 13.8. For each bus in the second file, the
generation at GADSBY is increased, that of the other bus decreased, area intertie chedules are adjusted as necessary,
the case is solved, and the flow is retrieved for all the branches in the first input file and stored in an array.

The report goes to a file; it consists mostly of a matrix showing the effect of the generation changes on the monitored
line flows.

The COPE procedure used the IPS feature INCREM to accomplish this task. IPF has no built-in incrementals function,
so the CFLOW program just does what is described in the paragraph above. It is not a general-use incremental program
mimicking the IPS function. For simplicity, a lot of names are hard-coded in this program. The user would have to
decide whether it would be more efficient to change them in the code for each study, or fix the code to be general and
then have to type them in over again for each run.

2.11. CFLOW C API (libcflow) 333



Interactive Power Flow

/******************************************************************************\
UTILITY: INCREM
TYPE: Powerflow (IPFSRV v. 209 or later) incremental line flows.
SUMMARY: Creates an incremental line flow listing of selected lines, sorted

by areas.
RELATED:
SEE ALSO: INCREM COPE procedure for IPS
UPDATED: February 17, 1995
LANGUAGE: Standard C. CFLOW libraries.
DEVELOPER: Walter L. Powell, TEOS, BPA x3234
REQUESTER:
USERS:
PURPOSE: Creates an incremental line flow listing of selected lines, sorted

by areas. The incremental flows are computed as the change in flows
from the base case to the incremental case. Up to 10 incremental
cases can be submitted, though this limit is easily extended.

\******************************************************************************/
/* increm.c

This CFLOW procedure creates an incremental line flow listing of
selected lines, sorted by areas. The incremental flows are computed
as the change in flows from the base case to the incremental case.

Several incremental cases can be submitted. The limit here is 10,
compared with 64 for the INCREM COPE procedure for IPS. However, this
limit can be extended with attendent changes in the incremental
storage arrays and in the output reports.

Two aspects makes this CFLOW procedure more complicated than the COPE
equivalent.

1. IPF uses area intertie "I" records to define the net area export.
If these records are present, an interarea transfer is effected
only by changing the scheduled interarea export. If "I" records exist
but the particular Area1-Area2 "I" record does not exist, then a
new "I" record must be added for Area1-Area2 with an export value
of the desired transfer. If no "I" records exist, then the interarea
transfer is effected by the ordinary means, namely, by increasing the
area1 export and decreasing the area2 export.

2. Process INCREM does not exist in IPF. Consequently, the sorting
and listing of branches was implemented entirely within this CFLOW
procedure.

The code is intentionally batch. It could be made interactive by
prompting for file names and bus names. All file names and bus names
are hard coded. Changing these requires re-editing, recompiling, and
relinking the program. Fortunately, these steps can be performed in
a short time.

The program's execution sceniero is as follows.

1. Load in base case history file.
(continues on next page)

334 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

2. Open branch data file, bus data file, and output report file.
3. Process the branch data file. For each branch, obtain the base case

line flow.
4. Process the bus data file to identify each transfer pair of buses:

"busname1" and "busname2". The "busname1" is a hard-coded global
variable.
a. For each bus pair, perturb busname1's generation +100MW (and its

associated areaname1's export +100MW) and busname2's generation
-100MW (and its associated areaname2 export -100MW).

b. Solve the case.
c. Loop through the monitored branches, obtaining the line flows

for the perturbed case.
5. Print the output report.

a. Use a branch index array "keysrt" in conjunction with a
user-written compare routine (to be used with qsort) to obtain a
double-entry list of monitored branches sorted by the following
fields: area1, bus1, area2, bus2, id, and section.

b. Print out the monitored lines flows using the sort index.
*/

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

#include "cflowlib.h"
#include "ft.h"

#define NULLC '\0'
#define MAXFLOWS 1000
#define MAXCASES 10
#define TRUE 1
#define FALSE 0
#define LINES_PER_PAGE 64

/* Declare global variables */

struct FLOWS {
char bus1[13]; /* bus1, base1 field */
char bus2[13]; /* bus2, base2 field */
char id; /* id field */
int section; /* section field */
char area1[11]; /* area name corresponding to bus1 */
char area2[11]; /* area name corresponding to bus2 */
float Pin[MAXCASES+1]; /* Tie line flows in MWs */
float Pout[MAXCASES+1]; /* Tie line flows in MWs */
} br_flow[MAXFLOWS];

/* Declare hard-coded files and bus names */

char *progname = "increm";
char *basefile = "98hs3inc.bse";

(continues on next page)

2.11. CFLOW C API (libcflow) 335



Interactive Power Flow

(continued from previous page)

char *branchfile = "line.dat";
char *busname1 = "GADSBY 313.8";
char *busfile = "name2.dat";
char *outfile = "98hs3inc.out";

/* declare function prototypes */

FILE *efopen (char *, char *);
int compare( const void *, const void * );
/* static int compare( const void *key1, const void *key2 ); */
int increment (char *, char *, float, int);
int get_bus_area (char *, char *);
int mod_bus_gen (char *, float);
int mod_area_export (char *, float);
int mod_itie_export (char *, char *, float);
void title (int *, int *, FILE *, pf_comments *, int, char *);

FILE *efopen (char *file, char *mode) /* fopen file, return message */
/* if can't */

{
FILE *fp;

if ((fp = fopen(file, mode)) != NULL)
return fp;

fprintf (stderr, " %s: can't open file %s mode %s\n",
progname, file, mode);

return NULL;
}

main(int argc, char *argv[])
{
pf_comments c;
pf_rec br, itie;

int i, j, k, status, numcases = 0, keysrt[2*MAXFLOWS], numbr, lineno = 0,
pageno = 0, intertie_flag = FALSE, section;

FILE *fp_busfile, *fp_branchfile, *fp_outfile;
char id, base[5], busname2[13], oldarea[11], string[133], areaname1[11];

pf_cflow_init( argc, argv);

/* Load the history data file */

status = pf_load_oldbase (basefile);
if (status) {
fprintf (stderr, " Unable to open history file %s status %d",
basefile, status);

pf_cflow_exit();
return 1;

}

/* Determine if any Area Intertie "I" records exist in the base case */

(continues on next page)

336 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

pf_init_rec (&itie, PF_REC); /* Initialize structure prior
to calling pf_rec_itie.
PF_REC is in header file "ft.h" */

status = pf_rec_itie (&itie, "F");
if (status == 0) intertie_flag = TRUE; /* If success, "I" records exist */

/* Obtain case comments */

pf_init_rec (&c, PF_REC); /* Initialize structure prior
to calling pf_rec_comments.
PF_REC is in header file "ft.h" */

status = pf_rec_comments (&c, "G");

/* Open the monitored branch data file for read only */

fp_branchfile = efopen(branchfile, "r");
if (fp_branchfile == NULL) {
fprintf (stderr, " Unable to open monitored branch file %s \n",
branchfile);

pf_cflow_exit();
return 1;

}

/* Open the bus data file for read only */

fp_busfile = efopen(busfile, "r");
if (fp_busfile == NULL) {
fprintf (stderr, " Unable to open buses list file %s \n",
busfile);

pf_cflow_exit();
return 1;

}

/* Open the output report file for write only */

fp_outfile = efopen(outfile, "w");
if (fp_outfile == NULL) {
fprintf (stderr, " Unable to open INCREM output report file %s \n",
outfile);

pf_cflow_exit();
return 1;

}

fprintf (fp_outfile, " Base case from history file %s \n", basefile);
for (i=0; i < 3; i++) {
if (strnlen (c.h[i], sizeof(c.h[0])) > 0)
fprintf (fp_outfile, " %s \n", &c.h[i][1]);

}
/*
Process each record in the monitored branch file. The procedure invokes
the following steps.

(continues on next page)

2.11. CFLOW C API (libcflow) 337



Interactive Power Flow

(continued from previous page)

1. Parse the ID fields of each branch entity into the branch data
structure.

2. A call to routine "pf_rec_branch" with appropriate arguments will
obtain the branch output quantitys Pin and Pout.

3. Parse the ID fields again of each branch entity into arrays used
for sorting and printing the output report. The "area1" and "area2"
arrays are obtained indirectly through the zone. First the zone is
obtained from the bus data structure of each terminal bus. From each
zone, the corresponding the area name is obtained via the call
"pf_area_of_zone".

4. An slightly unusual convention is employed here for subscrip "numbr".
Normally, a C-arrays begins with subscript "0". Here, it begins with
subscript "1". The reason is that it is necessary to distinquish
normal branches from transposed branches in the "keysrt" array, which
will be built after all lines have been read in and all incremental
cases have been processed. The distinction is done by positive
and negative subscripts: +n denotes the normal orientation, -n its
transpose. (C cannot distinquish between +0 and -0.)

*/

fprintf (stderr, " Reading in monitored line data \n");

numbr = 0;
while ( fgets (string, 132, fp_branchfile) != NULL) {
/*

Parse the branch data id fields from "string" into structure
"br.i.branch" and call "pf_rec_branch" with the "O" option to
retrieve the base case flow.

Copy the parsed branch data id fields into a second structure
"br_flow[]" for storing the flow results.

Note that the strncpy command requires that the strings be
explicitly null-terminated.

*/

pf_init_rec (&br, PF_REC); /* Initialize structure prior
to calling pf_rec_branch.
PF_REC is in header file "ft.h" */

strcpy (br.i.branch.type, "L ");
strncpy (br.i.branch.bus1_name, &string[6], 8);
br.i.branch.bus1_name[8] = NULLC;
strncpy (base, &string[14], 4);
base[4] = NULLC;
br.i.branch.bus1_kv = atof (base);
strncpy (br.i.branch.bus2_name, &string[19], 8);
br.i.branch.bus2_name[8] = NULLC;
strncpy (base, &string[27], 4);

(continues on next page)

338 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

base[4] = NULLC;
br.i.branch.bus2_kv = atof (base);
id = string[31];
if (id == '\n' || id == '\t' || id == '\0') id = ' ';
br.i.branch.ckt_id = id;
if (strnlen (string) > 32) {
base[0] = string[32];
base[1] = NULLC;
section = atoi (base);

} else {
section = 0;

}
br.i.branch.section = section;

/*
The branch data is now loaded in structure "branch". A call to
"pf_rec_branch" will retrieve the desired information.

*/
status = pf_rec_branch (&br, "O");
if (!status) {
numbr++;
strcpy (br_flow[numbr].bus1, &string[6]);
br_flow[numbr].bus1[12] = NULLC;
strcpy (br_flow[numbr].bus2, &string[19]);
br_flow[numbr].bus2[12] = NULLC;
br_flow[numbr].id = br.i.branch.ckt_id;
br_flow[numbr].section = br.i.branch.section;
br_flow[numbr].Pin[0] = br.s.branch.Pin;
br_flow[numbr].Pout[0] = br.s.branch.Pout;

/* Get the area name associated with bus1 indirectly through the
zone of bus1 */

status = get_bus_area (br_flow[numbr].bus1, br_flow[numbr].area1);
if (status) {
fprintf (stderr, " Unable to retrieve area associated with bus1 of \

monitored branch %s %s \n", br_flow[numbr].bus1, br_flow[numbr].bus2);
pf_cflow_exit();
return 1;

}

/* Get the area name associated with bus2 indirectly through the
zone of bus2 */

status = get_bus_area (br_flow[numbr].bus2, br_flow[numbr].area2);
if (status) {
fprintf (stderr, " Unable to retrieve area associated with bus2 of \

monitored branch %s %s \n", br_flow[numbr].bus1, br_flow[numbr].bus2);
pf_cflow_exit();
return 1;

}
}

}

(continues on next page)

2.11. CFLOW C API (libcflow) 339



Interactive Power Flow

(continued from previous page)

/* Begin the incremental bus loop. This is the list of buses in
testdc3.bdat, processed one-by-one. */

while ( fgets (string, 80, fp_busfile) != NULL) {

strncpy (busname2, string, sizeof(busname2));
busname2[12] = NULLC;
status = increment (busname1, busname2, 100.0, intertie_flag);
if (!status) {

numcases++;

/* Solve the modified case */

status = pf_solution ();

/* Write change case comments */

if (status) {

fprintf (fp_outfile, "\n Incremental case number %d failed \n",
numcases);

fprintf (fp_outfile, " 100 MW scheduled from \"%s\" to \"%s\"\n",
busname1, busname2);

fprintf (stderr, " Incremental case number %d failed \n",
numcases);

for (i = 1; i <= numbr; i++) {
br_flow[i].Pin[numcases] = 0.0;
br_flow[i].Pout[numcases] = 0.0;

}
} else {

fprintf (fp_outfile, "\n Incremental case number %d \n", numcases);
fprintf (fp_outfile, " 100 MW scheduled from \"%s\" to \"%s\"\n",
busname1, busname2);

fprintf (stderr, "\n Incremental case number %d \n", numcases);
fprintf (stderr, " 100 MW scheduled from \"%s\" to \"%s\"\n",
busname1, busname2);

for (i = 1; i <= numbr; i++) {
pf_init_rec (&br, PF_REC); /* Initialize structure prior

to calling pf_rec_branch.
PF_REC is in header file "ft.h" */

strcpy (br.i.branch.type, "L ");
strncpy (br.i.branch.bus1_name, br_flow[i].bus1, 8);
br.i.branch.bus1_name[8] = NULLC;
br.i.branch.bus1_kv = atof (&br_flow[i].bus1[8]);
strncpy (br.i.branch.bus2_name, br_flow[i].bus2, 8);
br.i.branch.bus2_name[8] = NULLC;
br.i.branch.bus2_kv = atof (&br_flow[i].bus2[8]);
br.i.branch.ckt_id = br_flow[i].id;

(continues on next page)

340 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

status = pf_rec_branch (&br, "O");
br_flow[i].Pin[numcases] = br.s.branch.Pin;
br_flow[i].Pout[numcases] = br.s.branch.Pout;

}
}

}
}

/* Obtain sorted double entry index "keysrt" for branch flows
keysrt[i] > 0 means "br_flow" is processed as is

< 0 means "br_flow" is processed transposed
*/

for (i = 0; i < numbr; i++) {
keysrt[2*i] = i + 1;
keysrt[2*i+1] = -keysrt[2*i];

}
qsort ( keysrt, 2*numbr, sizeof (keysrt[0]), compare );

title (&lineno, &pageno, fp_outfile, &c, numcases, "");

oldarea[0] = NULLC;
for (i = 0; i < 2*numbr; i++) {
j = keysrt[i];
if (j > 0) {
strcpy (areaname1, br_flow[j].area1);

} else {
strcpy (areaname1, br_flow[-j].area2);

}
if (strcmp (areaname1, oldarea) != 0) {
if (lineno+4 > LINES_PER_PAGE) {
lineno = 0;
title (&lineno, &pageno, fp_outfile, &c, numcases, areaname1);

} else {
fprintf (fp_outfile, "\n From area %s \n\n", areaname1);
lineno += 3;

}
strcpy (oldarea, areaname1);

}
if (lineno+1 > LINES_PER_PAGE) {
lineno = 0;
title (&lineno, &pageno, fp_outfile, &c, numcases, areaname1);

}
if (j > 0) {
fprintf (fp_outfile, " %s %s %c %s %8.2f ", br_flow[j].bus1,
br_flow[j].bus2, br_flow[j].id, br_flow[j].area2,
br_flow[j].Pin[0]);

for (k = 1; k <= numcases; k++) {
fprintf (fp_outfile, " %7.2f", br_flow[j].Pin[k] - br_flow[j].Pin[0]);

}
} else {
fprintf (fp_outfile, " %s %s %c %s %8.2f ", br_flow[-j].bus2,

(continues on next page)

2.11. CFLOW C API (libcflow) 341



Interactive Power Flow

(continued from previous page)

br_flow[-j].bus1, br_flow[-j].id, br_flow[-j].area1,
-br_flow[-j].Pout[0]);

for (k = 1; k <= numcases; k++) {
fprintf (fp_outfile, " %7.2f",
-br_flow[-j].Pout[k] + br_flow[-j].Pout[0]);

}
}
fprintf (fp_outfile, "\n");
lineno++;

}

pf_cflow_exit();
fclose (fp_busfile);
fclose (fp_branchfile);
fclose (fp_outfile);
if (!status) {
exit (0);

} else {
fprintf (stderr, " %s aborted with errors \n", progname);
exit (1);

}
}

int get_bus_area (char *name, char *area)

/* This routine returns the area name given the bus name. It is obtained
indirectly through the bus bus data structure. First, essential information
is inserted into the bus data structure and the remaining data in the
structure is obtained after calling "pf_rec_bus". From the zone name in
the bus structure, the area name is obtained by calling "pf_area_of_zone".

*/

{
pf_rec bus;
char base[5], zone[3];
int len, status;

pf_init_rec (&bus, PF_REC); /* Initialize structure prior
to calling pf_rec_bus.
PF_REC is in header file "ft.h" */

strcpy (bus.i.ACbus.type, "B ");
strncpy (bus.i.ACbus.name, name, 8);
bus.i.ACbus.name[8] = NULLC;
strcpy (base, &name[8]);
bus.i.ACbus.kv = atof (base);
status = pf_rec_bus (&bus, "G");
if (status) {
fprintf (stderr, " Bus %s is not in history file %s \n", name, basefile);
return 1;

}
strncpy (zone, bus.i.ACbus.zone, 2);
zone[2] = NULLC;

(continues on next page)

342 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

status = pf_area_of_zone (area, zone);
if (status) {
fprintf (stderr, " No area data in history file %s \n", basefile);
return 1;

}
return 0;

}

int increment (char *busname1, char *busname2, float delta_gen, int flag)

/* This routine applies +/- delta_gen to pairs of buses, areas, and/or
intertie records to effect the desired transfer. */

{
pf_rec b, a, itie;
char areaname1[11], areaname2[11];
int status;

/* The following are declared "static" such that they can be initialized
to NULL, are local, and are not volatile, i.e., they retain their value
after the routine is executed. In FORTRANese, they are similar to local
variables, initialized with a DATA statement, and retained with a
SAVE statement.

*/
static char oldbus1[13] = "", oldarea1[11] = "", oldbus2[13] = "",

oldarea2[13] = "";

/* Get areaname1 associated with busname1 */

status = get_bus_area (busname1, areaname1);
if (status) {
fprintf (stderr, " Unable to retrieve area associated with bus %s \n",
busname1);

pf_cflow_exit();
return 1;

}

/* Get areaname2 associated with busname2 */

status = get_bus_area (busname2, areaname2);
if (status) {
fprintf (stderr, " Unable to retrieve area associated with bus %s \n",
busname2);

pf_cflow_exit();
return 1;

}

/* Restore original Pgen on "oldbus1" and modify Pgen on "busname1".
In this case, restoring the original Pgen on "oldbus1" is not
necessary because it never changes its name once it is assigned.
The same is true for area "oldarea1" and for intertie "oldarea1-oldarea2".
This extra logic (two lines in each instance) is added for generality.

(continues on next page)

2.11. CFLOW C API (libcflow) 343



Interactive Power Flow

(continued from previous page)

*/

if (strcmp (busname1, oldbus1) != 0) {
if (strlen (oldbus1) > 0)
status = mod_bus_gen (oldbus1, -delta_gen);

status = mod_bus_gen (busname1, delta_gen);
}

/* Restore original Pgen on oldbus2 and modify Pgen on busname2 */

if (strcmp (busname2, oldbus2) != 0) {
if (strlen (oldbus2) > 0)
status = mod_bus_gen (oldbus2, delta_gen);

status = mod_bus_gen (busname2, -delta_gen);
}
if (flag) {

/* Area Intertie "I" records exist and these records define the net
area interchange export. Restore the original export on intertie
"oldarea1-oldarea2" and modify the export on intertie
"areaname1-areaname2" */

if (strlen (oldarea1) > 0 && strlen (oldarea2) > 0)
status = mod_itie_export (oldarea1, oldarea2, -delta_gen);

status = mod_itie_export (areaname1, areaname2, delta_gen);
} else {

/* Area intertie "I" records do not exist. Work directly on the
area records. Modify export on each area "areaname1" and
"areaname2" */

if (strlen (oldarea1) > 0)
status = mod_area_export (oldarea1, -delta_gen);

status = mod_area_export (areaname1, delta_gen);
if (strlen (oldarea2) > 0)
status = mod_area_export (oldarea2, delta_gen);

status = mod_area_export (areaname2, -delta_gen);
}
strcpy (oldbus1, busname1);
strcpy (oldbus2, busname2);
strcpy (oldarea1, areaname1);
strcpy (oldarea2, areaname2);
return status;

}

int mod_bus_gen (char *busname, float delta_gen)

/* This routine changes Pgen on bus "busname" an amount "delta_pgen" */

{
pf_rec b;
int status;

(continues on next page)

344 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

pf_init_rec (&b, PF_REC); /* Initialize structure prior
to calling pf_rec_bus.
PF_REC is in header file "ft.h" */

strcpy (b.i.ACbus.type, "B ");
strncpy (b.i.ACbus.name, busname, 8);
b.i.ACbus.name[8] = NULLC;
b.i.ACbus.kv = atof (&busname[8]);

status = pf_rec_bus (&b, "G");
if (status) {
fprintf (stderr, " Bus %s is not in history file %s \n",
busname, basefile);

pf_cflow_exit();
return 1;

}

/* Add "delta_gen" to bus generation */

b.i.ACbus.Pgen = b.i.ACbus.Pgen + delta_gen;
status = pf_rec_bus (&b, "M");
return status;

}

int mod_area_export (char *areaname1, float delta_export)

/* This routine changes Export on Area "areaname1" an amount "delta_export" */

{
pf_rec a;
int status;

pf_init_rec (&a, PF_REC); /* Initialize structure prior
to calling pf_rec_bus.
PF_REC is in header file "ft.h" */

strcpy (a.i.area.type, "A ");
strcpy (a.i.area.name, areaname1);
status = pf_rec_area (&a, "G");
if (status) {
fprintf (stderr, " Area %s is not in history file %s \n",
a.i.area.name, basefile);

pf_cflow_exit();
return 1;

}

/* Add "delta_export" to area export */

a.i.area.sched_export = a.i.area.sched_export + delta_export;
status = pf_rec_area (&a, "M");
return status;

}

(continues on next page)

2.11. CFLOW C API (libcflow) 345



Interactive Power Flow

(continued from previous page)

int mod_itie_export (char *areaname1, char *areaname2, float delta_export)

/* This routine changes Export on area intertie "areaname1-areaname2" and
amount "delta_export" */

{
pf_rec itie;
int status;

pf_init_rec (&itie, PF_REC); /* Initialize structure prior
to calling pf_rec_itie.
PF_REC is in header file "ft.h" */

if (strcmp (areaname1, areaname2) == 0) {
return 0;

} else {
strcpy (itie.i.itie.type, "I ");
strcpy (itie.i.itie.area1_name, areaname1);
strcpy (itie.i.itie.area2_name, areaname2);
status = pf_rec_itie (&itie, "G");
if (status) {
itie.i.itie.sched_export = delta_export;
status = pf_rec_itie (&itie, "A"); /* Add a new "I" record */

} else {
itie.i.itie.sched_export = itie.i.itie.sched_export + delta_export;
status = pf_rec_itie (&itie, "M"); /* Modify existing "I" record */

}
return status;

}
}

int compare( const void *key1, const void *key2 )
/* static int compare( const void *key1, const void *key2 ) */

/* This comparing function obtains the relative sort order of *key1 and
*key2 upon the following fields:

1. area1.
2. bus1.
3. area2.
4. bus2.
5. id.

*/

{
int i = *((int *) key1), j = *((int *) key2), comp;
char *area11, *area12, *area21, *area22, *bus11, *bus12, *bus21, *bus22,

id1, id2;
int sect1, sect2;

if (i == j) {
return 0;

(continues on next page)

346 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

} else {
if (i > 0) {
area11 = br_flow[i].area1;
area12 = br_flow[i].area2;
bus11 = br_flow[i].bus1;
bus12 = br_flow[i].bus2;
id1 = br_flow[i].id;
sect1 = br_flow[i].section;

} else {
area11 = br_flow[-i].area2;
area12 = br_flow[-i].area1;
bus11 = br_flow[-i].bus2;
bus12 = br_flow[-i].bus1;
id1 = br_flow[-i].id;
sect1 = br_flow[-i].section;

}
if (j > 0) {
area21 = br_flow[j].area1;
area22 = br_flow[j].area2;
bus21 = br_flow[j].bus1;
bus22 = br_flow[j].bus2;
id2 = br_flow[j].id;
sect2 = br_flow[j].section;

} else {
area21 = br_flow[-j].area2;
area22 = br_flow[-j].area1;
bus21 = br_flow[-j].bus2;
bus22 = br_flow[-j].bus1;
id2 = br_flow[-j].id;
sect2 = br_flow[-j].section;

}
comp = strcmp (area11, area21);
if (comp == 0) comp = strcmp (bus11, bus21);
if (comp == 0) comp = strcmp (area12, area22);
if (comp == 0) comp = strcmp (bus12, bus22);
if (comp == 0) comp = (unsigned int)id1 - (unsigned int)id2;
if (comp == 0) comp = sect1 - sect2;

return comp;
}

}

void title ( int *lineno, int *pageno, FILE *fp_outfile, pf_comments *c,
int numcases, char *areaname)

{
/* Write base case comments */

int i;

fprintf (fp_outfile, "\f\n\n");
(*pageno)++;
for (i=0; i < 3; i++) {

(continues on next page)

2.11. CFLOW C API (libcflow) 347



Interactive Power Flow

(continued from previous page)

if (strlen (c->h[i]) > 0)
fprintf (fp_outfile, " %s \n", &c->h[i][1]);
(*lineno)++;

}
fprintf (fp_outfile, "\n INCREMENTAL report (DELTA) line flows in MW \

page No. %d \n\n", *pageno);
fprintf (fp_outfile, " From bus To bus cir To area Base Flow ");
for (i = 1; i <= numcases; i++) {
fprintf (fp_outfile, "Incr %2d ", i);

}
(*lineno) += 6;
if (strlen (areaname) > 0) {
fprintf (fp_outfile, "\n From area %s \n\n", areaname);
(*lineno) += 3;

}
}

2.11.10 libcflow API Reference

The header file (cflowlib.h) used both by all CFLOW programs to define structures, constants, etc. in the libcflow
library.

union input_data
#include <cflowlib.h> Input data union.

Public Members

pf_AC_bus ACbus
Use for accessing AC bus input data.

pf_DC_bus DCbus
Use for accessing DC bus input data.

pf_branch branch
Use for accessing branch input data.

pf_LD LD
Use for accessing Two Terminal DC Line input data.

pf_LM LM
Use for accessing Multiterminal DC Line input data.

pf_E E
Use for accessing Equivalent Transmission Line Branch input data.

348 Chapter 2. Contents



Interactive Power Flow

pf_L L
Use for accessing Balanced Transmission Line input data.

pf_T T
Use for accessing Transformer input data.

pf_TP TP
Use for accessing Phase Shifting Transformer input data.

pf_R R
Use for accessing Regulating Transformer (LTC voltage control) input data.

pf_RN RN
Use for accessing Regulating Transformer (Contraints on VAR flow via change to RQ type of limits are
violated) input data.

pf_RQ RQ
Use for accessing Regulating Transformer (LTC VAR control) input data.

pf_RV RV
Use for accessing Regulating Transformer (Contraints on VAR flow via change to RP type of limits are
violated) input data.

pf_RP RP
Use for accessing Regulating Transformer (LTC phase shifter) input data.

pf_RM RM
Use for accessing Regulating Transformer input data.

pf_RZ RZ
Use for accessing Series Compensated Rani Model input data.

pf_area area
Use for accessing area input data.

pf_itie itie
Use for accessing intertie input data.

pf_cbus cbus
Use for accessing continuation bus input data.

pf_qcurve qcurve
Use for accessing reactive power capability curve input data.

pf_xdata xdata
Use for accessing switched reactance input data.

2.11. CFLOW C API (libcflow) 349



Interactive Power Flow

char cmnt[120]
Use for accessing comment.

struct pf_AC_bus
#include <cflowlib.h> This structure holds power flow input data for an AC bus. The fields type, owner, name,
kV, and zone are the same for both AC and DC buses.

Public Members

char type[3]
Two character bus record type, for example, B, BS, BQ, etc.

char owner[4]
Three character bus owner.

char name[9]
Eight character bus name.

float kv
Base kV of the bus.

char zone[3]
Two character zone name.

int dummy1
Ignore. This is a dummy field used for alignment purposes.

float Pload
Real load in MW.

float Qload
Reactive load in MVAR.

float Pshunt
Real shunt in MW.

float Qshunt
Reactive shunt in MVAR.

float Pmax
Maximum real load in MW.

float Pgen
Scheduled real power in MW.

350 Chapter 2. Contents



Interactive Power Flow

float Qsch_Qmax
Scheduled reactive load in MVAR (Qsch) or a real number designating maximum reactive power in MVAR
(Qmax).

float Qmin
Minimum reactive power in MVAR.

float Vhold_Vmax
Voltage to hold in per unit (Vhold) or a real number designating a maximum voltage limit in per unit
(Vmax), depending on the bus type.

float Vmin_Vdeg
Minimum voltage limit in per unit, or voltage angle for the BS bus

char rmt_name[9]
Eight character remote bus name.

float rmt_kv
Base kV of a remote bus.

char dummy2
Ignore. This is a dummy field used for alignment purposes.

float pct_vars
Percent vars supplied for control of remote bus.

struct pf_area
#include <cflowlib.h> This structure holds power flow input data for control areas which can be made up of
multiple zones.

Public Members

char type[3]
Record type; here “A” for area record.

char name[11]
Ten character area name.

char sbus_name[9]
Eight character area slack bus name.

float sbus_kv
Base kV of the area slack bus.

2.11. CFLOW C API (libcflow) 351



Interactive Power Flow

float sched_export
Scheduled export power from an area.

char zone0[3]
Two character zone defined to be in an area.

char zone1[3]
Two character zone defined to be in an area.

char zone2[3]
Two character zone defined to be in an area.

char zone3[3]
Two character zone defined to be in an area.

char zone4[3]
Two character zone defined to be in an area.

char zone5[3]
Two character zone defined to be in an area.

char zone6[3]
Two character zone defined to be in an area.

char zone7[3]
Two character zone defined to be in an area.

char zone8[3]
Two character zone defined to be in an area.

char zone9[3]
Two character zone defined to be in an area.

float max_Vpu
Maximum per unit voltage.

float min_Vpu
Minimum per unit voltage.

struct pf_area_soln
#include <cflowlib.h> This structure holds power flow solution (output) data for control areas which can be made
up of multiple zones.

352 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type.

float Pgen
Total area generation.

float Pload
Total area load.

float Ploss
Total area losses.

float Pexport
Total actual export.

struct pf_branch
#include <cflowlib.h> This structure holds power flow input data for a branch record.

Public Members

char type[3]
Two character branch record type.

char owner[4]
Three character branch owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Bus 2 name.

2.11. CFLOW C API (libcflow) 353



Interactive Power Flow

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel branch exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float total_rating
Total ampere rating for all lines.

int num_ckts
Number of parallel circuits represented by this record, for information purposes only. The equivalent
impedance is entered in r, x, g, b for lines with equal legs.

float r
Per unit resistance at base kV and base MVA.

float x
Per unit reactance at base kV and base MVA.

float g
Per unit conductance G_pi/2 at base kV and MVA. This format is for balanced lines when Y_pi sending
equals Y_pi receiving and only Y_pi needs to be input.

float b
Per unit susceptance B_pi/2 at base kV and MVA.

float tap1
Tap at bus1 of transformer, in kV for normal tap, in degrees for phase shifter.

float tap2
Tap at bus2 of transformer, in kV.

float alpha_N_deg
Initial firing angle in degrees at rectier (DC lines).

float gamma_0_deg
Minimum margin angle in degrees at inverter (DC lines).

char descrip[9]
Unknown.

354 Chapter 2. Contents



Interactive Power Flow

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float emergency_rating
Emergency rating in MVA.

struct pf_branch_soln
#include <cflowlib.h> This structure holds power flow solution data for branch records.

Public Members

char type[3]
Two character record type.

int num_ckts
If ckt id was “*””, contains number of parallels

float Pin
Real power flow at bus1, in MW. Positive indicates flow from bus1 toward bus2.

float Qin
Reactive power flow at bus1, in MVAR. Positive indicates flow from bus1 toward bus2.

float Pout
Real power flow at bus2, in MW. Negative indicates flow from bus1 to bus2 (i.e., without losses, Pout =
-Pin).

float Qout
Reactive power flow at bus2, in MVAR. Negative indicates flow from bus1 to bus2.

float Ploss
Real losses, in MW (Pin + Pout).

2.11. CFLOW C API (libcflow) 355



Interactive Power Flow

float Qloss
Reactive losses, in Mvar (Qin + Qout).

float crit_line_load_amps
Largest current in any section of a line (amps).

float crit_line_rat_amps
Actual value of rating used (amps).

char crit_line_rat_code
Type of rating used – N, B, T, or E.

int crit_line_load_term
Largest flow in a transformer terminal (MVA).

float crit_xfmr_load_mva
Largest flow in a transformer (MVA).

float crit_xfmr_rat_mva
Actual value of rating used (MVA).

char crit_xfmr_rat_code
Type of rating used – N, B, T, or E.

int crit_xfmr_load_term
Largest flow in a transformer terminal (MVA).

float tot_line_load_pct
Percent line compensation (total negative reactance divided by total positive reactance).

float tot_line_load_amps
Line compensation in amps.

float tot_xfmr_load_pct
Percent loading on the transformer, using the indicated rating

float tot_xfmr_load_mva
Transformer load in apparent power (MVA).

float tap1
Final tap at bus1 of transformer, in kV for normal tap, in degrees for phase shifter.

float tap2
Final tap at bus2 of transformer, in kV.

356 Chapter 2. Contents



Interactive Power Flow

struct pf_bus_AC_soln
#include <cflowlib.h> This struct stores power flow solution values for an AC bus.

Public Members

char type[3]
Two character bus record type, for example, B, BS, BQ, etc.

float Pgen
Solved real power generation in MW.

float Qgen
Solved reactive power in MVAR.

float Vmag
Solved voltage magnitude in per unit.

float Vdeg
Solved voltage angle in degrees.

float Pload
Solved real load in MW.

float Qload
Solved reactive load in MVAR.

float Bshunt_used
Total shunt used, net of capacitors (+) and reactors (-).

float Bshunt_sch
Total shunt available, net of capacitors and reactors.

float Bshunt_used_cap
Capacitive shunt used, MVAR.

float Bshunt_sch_cap
Capacitive shunt available, MVAR.

float Bshunt_used_rx
Reactive shunt used, MVAR.

float Bshunt_sch_rx
Reactive shunt available, MVAR.

2.11. CFLOW C API (libcflow) 357



Interactive Power Flow

float Qunsch
MVARs produced, on a type BS or BE bus.

struct pf_bus_DC_soln
#include <cflowlib.h> This struct stores power flow solution values for a DC bus.

Public Members

char type[3]
Two character bus record type.

float P_DC
AC real power into the DC bus, positive at the rectifier and negative at the inverter.

float Q_DC
AC reactive power into the DC bus, returned as a positive number.

float V_DC
DC terminal voltage (final voltage at commutating bus, in kV).

float converter_deg
Converter angle, alpha for rectifier, gamma for inverter, in degrees

float P_valve_losses
Difference between AC power and DC power.

float Q_valve_losses
Difference between AC power and DC power (same as Q_DC).

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

float dummy3
Ignore. This is a dummy field used for alignment purposes.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

float dummy5
Ignore. This is a dummy field used for alignment purposes.

358 Chapter 2. Contents



Interactive Power Flow

float dummy6
Ignore. This is a dummy field used for alignment purposes.

float dummy7
Ignore. This is a dummy field used for alignment purposes.

struct pf_case_stats
#include <cflowlib.h> Miscellaneous case data.

Public Members

char PF_version[11]
Ten character string containing Powerflow version information.

float base_mva
Base MVA of the base case (normally 100.0).

int num_DC_systems
An integer count of the number of DC systems in the case.

int num_areas
An integer count of the number of areas in the case.

int num_ities
An integer count of the number of interties in the case.

int num_zones
An integer count of the number of zones in the case.

int num_owners
An integer count of the number of owners in the case.

int num_buses
An integer count of the number of buses in the case (both AC and DC)

int num_area_slack_buses
An integer count of the number of area slack buses in the case.

int num_DC_buses
An integer count of the number of dc buses in the case.

int num_AGC_buses
An integer count of the number of buses with AGC control in the case.

2.11. CFLOW C API (libcflow) 359



Interactive Power Flow

int num_BX_buses
An integer count of the number of BX (constant V using switched Q) buses in the case.

int num_adjustable_buses
An integer count of the number of adjustable buses in the case.

int num_pct_var_ctrl_buses
An integer count of the number of buses with percent VAR control in the case.

int num_branches
An integer count of the number of branches in the case.

int num_circuits
An integer count of the number of circuits in the case. All parallel lines count as one circuit.

int num_DC_lines
An integer count of the number of DC linse in the case.

int num_LTC_xfmrs
An integer count of the number of LTC transformers in the case.

int num_phase_shifters
An integer count of the number of phase shifters in the case.

int case_soln_status

An integer containing the solution status. Corresponds to enumerated variables as follows:

1 = NO_CASE (no case data loaded)

2 = UNSOLVED (netdata loaded)

5 = SOLVED (successful solution, or solved case loaded)

6 = SAVED (solved case has been saved)

7 = DIVERGED (unsuccessful solution - diverged)

int num_diff_kv
An integer count of the number of unique kVs in the case.

int num_rec_types
An integer count of the number of unique record types in the case.

struct pf_cbus
#include <cflowlib.h> This structure holds power flow input data for continuation bus (+) records.

360 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character bus record type, for example, “+””, “+A”, etc.

char owner[4]
Three character bus owner.

char name[9]
Eight character bus name.

float kv
Base kV of the bus.

char code_year[3]
Two character extension of type.

float Pload
Real load in MW belonging to this owner.

float Qload
Reactive load in MVAR belonging to this owner.

float Gshunt
Fixed real shunt in MW.

float Bshunt
Fixed reactive shunt in MVAR.

float Pgen
Scheduled real power in MW for this owner.

float Qgen_Qmax
Scheduled reactive power in MVAR (Qgen) or maximum reactive power in MVAR (Qmax).

float Qmin
Minimum reactive power in MVAR.

struct pf_cbus_soln
#include <cflowlib.h> This structure holds power flow solution (output) data for continuation bus (+) records.

2.11. CFLOW C API (libcflow) 361



Interactive Power Flow

Public Members

char type[3]
Two character bus record type, for example, “+””, “+A”, etc.

float Pgen
Solved real power generation in MW.

float Qgen
Solved reactive power generation in MVAR.

float Pload
Solved real load (same as input).

float Qload
Solved reactive load (same as input).

float Gshunt
Solved real shunt.

float Bshunt
Solved reactive shunt.

struct pf_comments
#include <cflowlib.h> Comment card data.

Public Members

char case_name[11]
Ten character string containing caseid.

char case_desc[21]
Twenty character string containing case description.

char h[3][133]
A character array containing case headers. The first one, h[0], is generated by IPF, and contains the program
version, the caseid and description, and the date of the run. The other two are user-specified.

char c[20][121]
A character array containing case comments.

struct pf_DC_bus
#include <cflowlib.h> This structure holds power flow input data for a DC bus. The fields type, owner, name,
kV, and zone are the same for both AC and DC buses.

362 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character bus record type.

char owner[4]
Three character bus owner.

char name[9]
Eight character bus name.

float kv
Base kV of the bus.

char zone[3]
Two character zone name.

int bridges_per_ckt
Number of dc bridges per circuit.

float smooth_rx_mh
Smoothing reactance in millihenries (mH).

float alpha_min_deg
Alpha_min in degrees.

float alpha_stop_deg
Alpha_stop in degrees.

float valve_drop_per_bridge_volts
Voltage drop per valve.

float bridge_current_rating_amps
DC current rating.

float alpha_gamma_N_deg
Alpha_N or gamma_N in degrees.

float gamma_0_deg
Gamma_0 in degrees.

float P_sched
Scheduled power MW.

float V_sched
Scheduled voltage kV.

2.11. CFLOW C API (libcflow) 363



Interactive Power Flow

float dummy1
Ignore. This is a dummy field used for alignment purposes.

char commutating_bus_name[9]
Eight character commutating bus name.

float commutating_bus_kv
Commutating bus kV.

char converter_code
One character converter code.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

struct pf_E
#include <cflowlib.h> This structure holds power flow input data for a equivalent transmission line record (asym-
metric pi representation).

Public Members

char type[3]
Two character record type “E”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Bus 2 name.

364 Chapter 2. Contents



Interactive Power Flow

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel line exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float total_rating
Total ampere rating for all lines.

int num_ckts
Number of parallel circuits represented by this record, for information purposes only. The impedance is
entered in r, x, g1, b1, g2, b2.

float r
Per unit resistance at base kV and base MVA.

float x
Per unit reactance at base kV and base MVA.

float g1
Per unit conductance at base kV and MVA for bus 1 end of line.

float b1
Per unit susceptance at base kV and MVA for bus 1 end of line.

float g2
Per unit conductance at base kV and MVA for bus 2 end of line.

float b2
Per unit susceptance at base kV and MVA for bus 2 end of line..

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

char dummy3[9]
Ignore. This is a dummy field used for alignment purposes.

2.11. CFLOW C API (libcflow) 365



Interactive Power Flow

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

struct pf_itie
#include <cflowlib.h> This structure holds power flow input data for intertie records. It indicates the two areas
between which interchange must be scheduled.

Public Members

char type[3]
Two character record type, here “I” for intertie record.

char area1_name[11]
Ten character area1 name.

char area2_name[11]
Ten character area2 name.

float sched_export
Scheduled export power.

struct pf_itie_soln
#include <cflowlib.h> This structure holds power flow solution (output) data for interties which can be.

366 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type.

float Pexport
Solution export power.

float Pcirc
Solution circulating current.

int input_exists

An integer indicating whether intertie values are internally or externally generated.

0= no input record (internally generated itie)

1= input data is from input record.

struct pf_L
#include <cflowlib.h> This structure holds power flow input data for an AC line record (symmetric pi represen-
tation).

Public Members

char type[3]
Two character record type “L”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Bus 2 name.

2.11. CFLOW C API (libcflow) 367



Interactive Power Flow

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel branch exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float total_rating
Total ampere rating for all lines.

int num_ckts
Number of parallel circuits represented by this record, for information purposes only.

float r
Per unit resistance at base kV and base MVA.

float x
Per unit reactance at base kV and base MVA.

float g
Per unit conductance at base kV and MVA.

float b
Per unit susceptance at base kV and MVA.

float miles
Length of the line in miles - information only.

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

float dummy3
Ignore. This is a dummy field used for alignment purposes.

char descrip[9]
Information only.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

368 Chapter 2. Contents



Interactive Power Flow

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

struct pf_LD
#include <cflowlib.h> This structure holds power flow input data for a two terminal DC line record.

Public Members

char type[3]
Two character record type “LD”.

char owner[4]
Three character owner.

char bus1_name[9]
Converter bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Converter bus 2 name.

float bus2_kv
Base kV for bus 2.

2.11. CFLOW C API (libcflow) 369



Interactive Power Flow

char I_or_R_control
Inverter or rectier control - Enter ‘R’ for rectiier control or ‘I’ for inverter control (point of DC line in which
scheduled power is measured).

int dummy1
Ignore. This is a dummy field used for alignment purposes.

float total_rating
Total ampere rating for all lines.

int dummy2
Ignore. This is a dummy field used for alignment purposes.

float R
DC Line resistance, ohms.

float L_mh
DC line inductance, millihenries.

float C_uf
DC line capacitance, microfarads.

float P_sched
Schedule DC power (MW) - Scheduled DC power in megawatts from converter 1 to 2 metered at the end
indicated by I or R in I_or_R_control.

float V_sched
Schedule DC line volts (kV) - at rectier end of DC line.

float miles
How many miles long the line is.

float alpha_N_deg
Initial firing angle in degrees at rectier.

float gamma_0_deg
Minimum margin angle in degrees at inverter.

char dummy3[9]
Ignore. This is a dummy field used for alignment purposes.

char dummy4[4]
Ignore. This is a dummy field used for alignment purposes.

char dummy5[4]
Ignore. This is a dummy field used for alignment purposes.

370 Chapter 2. Contents



Interactive Power Flow

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float dummy6
Ignore. This is a dummy field used for alignment purposes.

struct pf_LM
#include <cflowlib.h> This structure holds power flow input data for a multiterminal DC line record.

Public Members

char type[3]
Two character record type “LM”.

char owner[4]
Three character owner.

char bus1_name[9]
Converter bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Converter bus 2 name.

float bus2_kv
Base kV for bus 2.

char dummy1
Ignore. This is a dummy field used for alignment purposes.

2.11. CFLOW C API (libcflow) 371



Interactive Power Flow

int dummy2
Ignore. This is a dummy field used for alignment purposes.

float total_rating
Total Current (I) Rating in Amps - Maximum DC line current in ampere.

int dummy3
Ignore. This is a dummy field used for alignment purposes.

float R
DC Line resistance, ohms.

float L_mh
DC line inductance, millihenries.

float C_uf
DC line capacitance, microfarads.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

float dummy5
Ignore. This is a dummy field used for alignment purposes.

float miles
Length of the line in miles - information only.

float dummy6
Ignore. This is a dummy field used for alignment purposes.

float dummy7
Ignore. This is a dummy field used for alignment purposes.

char dummy8[9]
Ignore. This is a dummy field used for alignment purposes.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

372 Chapter 2. Contents



Interactive Power Flow

float bottleneck_rating
Bottleneck rating in Amps.

float dummy9
Ignore. This is a dummy field used for alignment purposes.

struct pf_qcurve
#include <cflowlib.h> This structure holds power flow input data for reactive power capability.

Public Members

char type[3]
Two character record type - here “QP”, “QM”, or “QN”.

char PU_code[3]
Two character code – PU for per unit or blank for kV values.

char active
One character code – “A” for active or “*”” for inactive.

char bus_name[9]
Eight character bus name.

float bus_kv
Base kV of the bus.

float Pgen0
Real power levels in MW, for the reactive capability curve. Value is Qmin0 for QN records, Qmax0 for QM
cards, and Pgen0 for QP cards, but is always named Pgen0, etc.

float Pgen1
Real power levels in MW, for the reactive capability curve.

float Pgen2
Real power levels in MW, for the reactive capability curve.

float Pgen3
Real power levels in MW, for the reactive capability curve.

float Pgen4
Real power levels in MW, for the reactive capability curve.

float Pgen5
Real power levels in MW, for the reactive capability curve.

2.11. CFLOW C API (libcflow) 373



Interactive Power Flow

float Pgen6
Real power levels in MW, for the reactive capability curve.

float Pgen7
Real power levels in MW, for the reactive capability curve.

float Pgen8
Real power levels in MW, for the reactive capability curve.

float Pgen9
Real power levels in MW, for the reactive capability curve.

struct pf_qcurve_soln
#include <cflowlib.h> This structure holds power flow solution (output) data for reactive power cability curves.

Public Members

char type[3]
Two character record type – here “QP”, “QM”, or “QN”.

float Pgen
Real power output level in MW.

float Qgen
Reactive power output level in MVAR.

struct pf_R
#include <cflowlib.h> This structure holds power flow input data for regulating transformer record. Struct for
R, RN, RQ, RV type records.

Public Members

char type[3]
Two character record type “R”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

374 Chapter 2. Contents



Interactive Power Flow

int var_tap_side

Variable tap side if T_max and T_min cannot orient T_x.

0 - Low alpha is xed

1 - Bus 1 is variable

2 - Bus 2 is variable

char bus2_name[9]
Bus 2 name.

float bus2_kv
Base kV for bus 2.

char dummy1
Ignore. This is a dummy field used for alignment purposes.

int dummy2
Ignore. This is a dummy field used for alignment purposes.

float dummy3
Ignore. This is a dummy field used for alignment purposes.

int num_taps
Total number of LTC taps. If blank, assumes continuous action.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

float dummy5
Ignore. This is a dummy field used for alignment purposes.

float dummy6
Ignore. This is a dummy field used for alignment purposes.

float dummy7
Ignore. This is a dummy field used for alignment purposes.

float max_tap
Maximum kV tap.

float min_tap
Minimum kV taps.

float dummy8
Ignore. This is a dummy field used for alignment purposes.

2.11. CFLOW C API (libcflow) 375



Interactive Power Flow

float dummy9
Ignore. This is a dummy field used for alignment purposes.

char rmt_bus_name[9]
Controlled bus name.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float rmt_bus_kv
Controlled bus kV.

float Qmax
Maximum reactive (MVAR) flow through the transformer.

float Qmin
Minimum reactive (MVAR) flow through the transformer.

struct pf_rec
#include <cflowlib.h> Record data.

Public Members

input_data i
Used to access power flow input data.

solution_data s
Used to access power flow solution (output) data.

struct pf_RM
#include <cflowlib.h> This structure holds power flow input data for regulating transformer RM, RP record
types.

376 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type “RM”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int var_tap_side

Variable tap side if T_max and T_min cannot orient T_x.

0 - Low alpha is xed

1 - Bus 1 is variable

2 - Bus 2 is variable

char bus2_name[9]
Bus 2 name.

float bus2_kv
Base kV for bus 2.

char dummy1
Ignore. This is a dummy field used for alignment purposes.

int dummy2
Ignore. This is a dummy field used for alignment purposes.

float dummy3
Ignore. This is a dummy field used for alignment purposes.

int num_taps
Total number of LTC taps.

float dummy4
Ignore. This is a dummy field used for alignment purposes.

float dummy5
Ignore. This is a dummy field used for alignment purposes.

2.11. CFLOW C API (libcflow) 377



Interactive Power Flow

float dummy6
Ignore. This is a dummy field used for alignment purposes.

float dummy7
Ignore. This is a dummy field used for alignment purposes.

float max_phase_shift_deg
Maximum angle in degrees.

float min_phase_shift_deg
Minimum angle in degrees.

float dummy8
Ignore. This is a dummy field used for alignment purposes.

float dummy9
Ignore. This is a dummy field used for alignment purposes.

char rmt_bus_name[9]
Controlled bus name.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float rmt_bus_kv
Controlled bus kV.

float Pmax
Maximum real power (MW) flow through the transformer.

float Pmin
Maximum real power (MW) flow through the transformer.

struct pf_RZ
#include <cflowlib.h> This structure holds power flow input data for Rapid Adjustment of Network Impedance
(RANI) device. It represents a series connected thyristor which changes its series impedance to control power
or voltage.

378 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type “RZ”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int var_tap_side

Variable tap side if T_max and T_min cannot orient T_x.

0 - Low alpha is xed

1 - Bus 1 is variable

2 - Bus 2 is variable

char bus2_name[9]
Bus 2 name.

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel transformer exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float I_rate
Rated current.

int rani_type

TYPE 1, 2, or 3

TYPE 1 - Control Pc using Xij TYPE 2 - Control V using Xij TYPE 3 - Control V using Bis

float Pc_max
Pc_max in MW

2.11. CFLOW C API (libcflow) 379



Interactive Power Flow

float Pc_min
Pc_min in MW

float Xij_max
Per unit maximum reactance.

float Xij_min
Per unit minimum reactance.

float Bis_max
Per unit minimum reactance.

float Bis_min
Per unit minimum reactance.

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

char dummy3[9]
Ignore. This is a dummy field used for alignment purposes.

char dummy4[4]
Ignore. This is a dummy field used for alignment purposes.

char dummy5[4]
Ignore. This is a dummy field used for alignment purposes.

float dummy6
Ignore. This is a dummy field used for alignment purposes.

float dummy7
Ignore. This is a dummy field used for alignment purposes.

float dummy8
Ignore. This is a dummy field used for alignment purposes.

struct pf_T
#include <cflowlib.h> This structure holds power flow input data for transformer record.

380 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type “T”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

Metering point.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Bus 2 name.

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel transformer exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float total_rating
Total ampere rating.

int num_ckts
Number of parallel circuits represented by this record, for information purposes only.

float r
Per unit resistance at base kV and base MVA.

float x
Per unit reactance at base kV and base MVA.

2.11. CFLOW C API (libcflow) 381



Interactive Power Flow

float g
Per unit conductance at base kV and MVA.

float b
Per unit susceptance at base kV and MVA.

float tap1
Fixed bus 1 TAP which describe bus 1 relative to bus 2.

float tap2
Fixed bus 2 TAP.

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

char dummy3[9]
Ignore. This is a dummy field used for alignment purposes.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float emergency_rating
Emergency rating in MVA.

struct pf_TP
#include <cflowlib.h> This structure holds power flow input data for phase shifting transformer record.

382 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character record type “TP”.

char owner[4]
Three character owner.

char bus1_name[9]
Bus 1 name.

float bus1_kv
Base kV for bus 1.

int meter

The line metering point for area tie lines.

1 = bus 1 end.

2 = bus 2 end.

If blank, metering point will be identified (1) by location where line ownership differs from bus ownership
or (2) when buses at end of tie line have same ownership, then the bus name 1 will be the metering point.

char bus2_name[9]
Bus 2 name.

float bus2_kv
Base kV for bus 2.

char ckt_id
Circuit identification if more than one parallel transformer exists.

int section
Section number for making an equivalent for series elements (numeric). Program assembles series elements
in numerical order of section numbers (need not be consecutive).

float total_rating
Total ampere rating.

int num_ckts
Number of parallel circuits represented by this record, for information purposes only.

float r
Per unit resistance at base kV and base MVA.

float x
Per unit reactance at base kV and base MVA.

2.11. CFLOW C API (libcflow) 383



Interactive Power Flow

float g
Per unit conductance at base kV and MVA.

float b
Per unit susceptance at base kV and MVA.

float phase_shift_deg
Fixed bus 1 TAP or xed phase shift in degrees which describe bus 1 relative to bus 2.

float tap2
Fixed bus 2 TAP or blank for xed phase shifter.

float dummy1
Ignore. This is a dummy field used for alignment purposes.

float dummy2
Ignore. This is a dummy field used for alignment purposes.

char dummy3[9]
Ignore. This is a dummy field used for alignment purposes.

char date_in[4]
Energization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

char date_out[4]
De-nergization Date in format “MYY”. Where M = {1,2,3,4,5,6,7,8,9,O,N,D} and YY = last two digits of
year.

float thermal_rating
Thermal rating in Amps.

float bottleneck_rating
Bottleneck rating in Amps.

float emergency_rating
Emergency rating in MVA.

struct pf_xdata
#include <cflowlib.h> This structure holds power flow input data for switched reactance devices (capacitor and
reactor banks).

384 Chapter 2. Contents



Interactive Power Flow

Public Members

char type[3]
Two character array designating the record type — here “X” for switched reactance record.

char owner[4]
Three character array designating an owner.

char bus_name[9]
Eght character bus name.

float bus_kv
Base kV of the BX bus.

char rmt_name[9]
Eight character remote bus name.

float rmt_kv
Remote bus base kV.

int seg1_num_steps
Number of each reactance value available (integer).

float seg1_delta_mva
Magnitude of reactance values available.

int seg2_num_steps
Number of each reactance value available (integer).

float seg2_delta_mva
Magnitude of reactance values available.

int seg3_num_steps
Number of each reactance value available (integer).

float seg3_delta_mva
Magnitude of reactance values available.

int seg4_num_steps
Number of each reactance value available (integer).

float seg4_delta_mva
Magnitude of reactance values available.

int seg5_num_steps
Number of each reactance value available (integer).

2.11. CFLOW C API (libcflow) 385



Interactive Power Flow

float seg5_delta_mva
Magnitude of reactance values available.

int seg6_num_steps
Number of each reactance value available (integer).

float seg6_delta_mva
Magnitude of reactance values available.

int seg7_num_steps
Number of each reactance value available (integer).

float seg7_delta_mva
Magnitude of reactance values available.

int seg8_num_steps
Number of each reactance value available (integer).

float seg8_delta_mva
Magnitude of reactance values available.

struct pf_xdata_soln
#include <cflowlib.h> This structure holds power flow solution (output) data for switched reactance (capacitor
and reactor banks) devices.

Public Members

char type[3]
Two character array designating the record type — here “X” for switched reactance record.

int seg1_sch_units
Scheduled number of steps.

int seg1_used_units
Actual number of steps used.

float seg1_mvar_per_unit
Actual reactance amounts used per step.

int seg2_sch_units
Scheduled number of steps.

int seg2_used_units
Actual number of steps used.

386 Chapter 2. Contents



Interactive Power Flow

float seg2_mvar_per_unit
Actual reactance amounts used per step.

int seg3_sch_units
Scheduled number of steps.

int seg3_used_units
Actual number of steps used.

float seg3_mvar_per_unit
Actual reactance amounts used per step.

int seg4_sch_units
Scheduled number of steps.

int seg4_used_units
Actual number of steps used.

float seg4_mvar_per_unit
Actual reactance amounts used per step.

int seg5_sch_units
Scheduled number of steps.

int seg5_used_units
Actual number of steps used.

float seg5_mvar_per_unit
Actual reactance amounts used per step.

int seg6_sch_units
Scheduled number of steps.

int seg6_used_units
Actual number of steps used.

float seg6_mvar_per_unit
Actual reactance amounts used per step.

int seg7_sch_units
Scheduled number of steps.

int seg7_used_units
Actual number of steps used.

2.11. CFLOW C API (libcflow) 387



Interactive Power Flow

float seg7_mvar_per_unit
Actual reactance amounts used per step.

int seg8_sch_units
Scheduled number of steps.

int seg8_used_units
Actual number of steps used.

float seg8_mvar_per_unit
Actual reactance amounts used per step.

union solution_data
#include <cflowlib.h> Solution (output) data union.

Public Members

pf_bus_AC_soln ACbus
Use for accessing AC bus solution (output) data.

pf_bus_DC_soln DCbus
Use for accessing DC bus solution (output) data.

pf_branch_soln branch
Use for accessing branch solution (output) data.

pf_area_soln area
Use for accessing area solution (output) data.

pf_itie_soln itie
Use for accessing intertie solution (output) data.

pf_cbus_soln cbus
Use for accessing continuatino bus solution (output) data.

pf_qcurve_soln qcurve
Use for accessing reactive capability curve solution (output) data.

pf_xdata_soln xdata
Use for accessing switched reactance solution (output) data.

file cflowlib.h

388 Chapter 2. Contents



Interactive Power Flow

Defines

CFLOW_IPC_BUFF_SIZE

This is the byte size of the in and out buffers used by CLFOW.

Typedefs

typedef pf_R pf_RN

typedef pf_R pf_RQ

typedef pf_R pf_RV

typedef pf_RM pf_RP

Enums

enum pf_list_type
This is an enumeration of options that you can use in calls to pf_get_list().

Values:

enumerator AREA_LIST
A list of the different area names in the case. String length 11. Max size 50.

enumerator BUS_LIST
A list of the different bus names in the case.

enumerator KV_LIST
A list of the different bus kV’s in the case. String length 4. Max size 150.

enumerator OWNER_LIST
A list of the different owners in the case. String length 4. Max size 450.

enumerator REC_TYPE_LIST
A list of the different record types in the case. String length 3. Max size 50.

enumerator ZONE_LIST
A list of the different zones in the case.. String length 3. Max size 150.

2.11. CFLOW C API (libcflow) 389



Interactive Power Flow

Functions

void pf_cflow_exit(void)
Close the data link to the powerow engine (ipfsrv).

Call this in to “disconnect” properly from ipfsrv.

Returns
Has no return; it calls the exit function.

void pf_cflow_init(int argc, char *argv[])
Initialize the data link to the powerow engine (ipfsrv).

Establishes a socket connection with the Powerflow process (ipfsrv). Other command line arguments that
have been collected by the argv mechanism may be used by the CFLOW program. The command line
arguments are “shifted left” such that *argv[1] contains the first command line argument intended for the
CFLOW program and argc is updated to reflect the count of those arguments only.

Returns
Returns 0 if it is successful; otherwise, it calls the exit function.

int pf_cflow_ipc(void)
Buffer interface to powerow.

A low-level interface to the interprocess communication that uses two global buffers pf_cflow_inbuf and
pf_cflow_outbuf. This routine is used by most of the other pf functions; however, you can also use it
directly. You put valid PCL commands and associated WSCC-formatted data records into pf_cflow_outbuf,
call pf_cflow_ipc, then look for the results in pf_cflow_inbuf.

A list and description of the valid PCL commands is in the documentation.

Returns
Returns 0 if it is successful; otherwise, it calls the exit function.

int pf_del_area(char *area)
Delete area by name.

Delete an area along will all buses and all associated branches in the area.

error = pf_del_area("ARIZONA");

See also:
pf_del_zone

Parameters
area – [in] A string representing an area name.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

int pf_del_zone(char *zone)
Delete zone by name.

Delete a zone along will all buses and all associated branches in the zone.

390 Chapter 2. Contents



Interactive Power Flow

error = pf_del_zone("NA");

See also:
pf_del_area

Parameters
zone – [in] A string representing a zone name.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

int pf_rename_area(char *oldname, char *newname)
Rename an area.

Utilizes the powerflow change records of type Z.

See also:
pf_rename_zone pf_rename_bus

Parameters
• oldname – [in] A string representing an area name to be changed.

• newname – [in] A string representing an area name that will become the new name.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

int pf_rename_bus(char *oldname, float oldkv, char *newname, float newkv)
Rename a bus and re-map all associated data to the new name.

Utilizes the powerflow change records of type Z.

See also:
pf_rename_zone pf_rename_area

Parameters
• oldname – [in] A string representing a bus name to be changed.

• oldkv – [in] A floating point number representing the base kV of the bus.

• newname – [in] A string representing an area name that will become the new name.

• newkv – [in] A floating point number representing the new base kV.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

int pf_rename_zone(char *oldname, char *newname)
Rename a zone.

All zone fields for all records in a zone are updated. If the new zone name already exists, a combined zone
results if adjacency permits; otherwise, it is an error.

Utilizes the powerflow change records of type Z.

2.11. CFLOW C API (libcflow) 391



Interactive Power Flow

Parameters
• oldname – [in] A string representing a zone name to be replaced.

• newname – [in] A string representing the new zone name.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

int pf_load_changes(char *filename)
Load changes into case.

Passes an ASCII change file name to ipfsrv so that it can read and interpret the file or filename contains
an “*\n” followed by change records which are to be processed by ipfsrv. The records must be separated
by “\n”.

Parameters
filename – [in] A string representing a file name, or “*\n”, followed by valid change records.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_load_netdata(char *filename)
Load network data.

Passes a network data file name to the ipfsrv process so that it can read and interpret the network data file.
Or contains an “*\n” followed by bus and branch records which are to be processed by ipfsrv. The records
must be separated by “\n”. If a case is currently loaded, it is overwritten and the data is lost. The case
loaded is not usable by GUI after CFLOW has completed.

Parameters
filename – [in] A string representing a file name or an “*\n” followed by bus and branch
records.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_load_oldbase(char *filename)
Load a base case.

Passes a base case filename to the ipfsrv process so that it can read and interpret the file as an “oldbase”. If
a case is currently loaded, it is overwritten and the data is lost.

Parameters
filename – [in] A string representing a file name followed by an optional, “rebuild =
ON|OFF”.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_put_inrec(char *record)
Send WSCC change record to powerow.

Changes, adds, or deletes an input data record for Powerflow. See Record Format section for a description
of input record types and rules for adding, changing, and deleting. This function provides a means of
inputting records for which there is not a specific function such as factor change (P), although it can be used
for inputting any WSCC input record

Parameters
record – A string containing WSCC formatted data for a Powerflow input data record.

Returns
Returns 0 (zero) if it is successful; otherwise, it returns 1.

392 Chapter 2. Contents



Interactive Power Flow

int pf_rec_area(pf_rec *r, char *action)
Retrieves, modifies, adds, or deletes area data.

Parameters
• r – [inout] A pointer to a structure of type pf_rec supplied by the calling routine.

• action – [in] A string designating the action to be performed on an area record. See below
for the codes and their meanings. Either upper or lower case is acceptable.

”F” Retrieves the first area record.

”N” Retrieves the next area record. (Area name must be valid.)

”G” Retrieves the rest of the area record. (Area name must be valid.)

”D” Deletes an area record. (Area name must be valid.)

”A” Adds an area record. (All required data fields must be valid. See the IPF Batch User’s
Guide .)

”M” Modifies an area record. (All required data fields must be valid. See the IPF Batch
User’s Guide .)

”E” Eliminates all area records. (area_rec is ignored and can be set to zero. This code does
not delete any zones, buses, etc. It places all zones in area “blank.”)

“O” Retrieves the solution output data. (The case must be solved and the area name must
be valid.)

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_branch(pf_rec *r, char *action)
Retrieves, modifies, adds, or deletes branch records.

To access individual fields of the records use the union member name, for example, using a declaration of
pf_rec br; then br.i.branch.tap1 would reference the input tap1 field for a transformer. If you were looking at
an E-type line instead, the variable br.i.branch.tap1 would contain the g2 value, but to make it more obvious
what you were actually doing, you would probably want to use the union member name br.i.E.g2, instead.
All of the structures and unions are declared in cflowlib.h.

Parameters
• r – [inout] A pointer to a structure of type pf_rec, supplied by the calling routine.

• action – [in] A string designating the action to be performed on a branch record. See
below for the codes and their meanings. Either upper or lower case is acceptable.

”F3” Retrieves the first branch record associated with bus1, bus2, and circuit ID.
bus1_name, bus1_kV, bus2_name, bus2_kV, and ckt_id must be valid.

”N3” Retrieves the next branch record associated with bus1, bus2, and circuit ID. See notes
below.

”F2” Retrieves the first branch record associated with bus1 and bus2. bus1_name, bus1_kV,
bus2_name, bus2_kV must be valid.

”N2” Retrieves the next branch record associated with bus1 and bus2. See notes below.

”F1” Retrieves the first branch record associated with bus1. bus1_name and bus1_kV must
be valid.

2.11. CFLOW C API (libcflow) 393



Interactive Power Flow

”N1” Retrieves the next branch record associated with bus1. See notes below.

”F” Retrieves the first branch record disregarding bus association. All id fields may be null
or zero.

”N” Retrieves the next branch record disregarding bus association. See notes below.

”G” Retrieves the rest of the branch record. All id fields must be valid to get a specific
record.

”D” Deletes a branch record. All id fields must be valid.

”A” Adds a branch record. All fields appropriate for the branch type must be valid

”M” Modifies a branch record. All fields appropriate for the branch type must be valid.

”O” Retrieves the solution output data.

Notes:

1) with a “wildcard” circuit ID of ” ” or “*” and a section code of zero (or blank) -“G” and
“F3” are the same as “F2”.

2) with a valid (non-“wildcard”) circuit ID and a section code of zero (or blank) -“G” is
the same as “F3”.

3) codes “F”, “N”, “N1”, “N2”, and “N3” do not need any data specified in the pf_rec ,
however the first use of “N”, “N1”, “N2”, and “N3” relies on initialization with a “F”, “F1”,
“F2”, “F3”, or “G” code on a previous call.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_bus(pf_rec *r, char *action)
Retrieves, modifies, adds, or deletes bus records.

pf_rec is a union of both input data (i) and solution data (s). To access individual fields of the records use the
union member name, for example, using a declaration of pf_rec b; then b.i.ACbus.Pload would contain the
MW load for an AC bus, and the smoothing reactance for a DC bus, but to make it more obvious what you
were actually doing, you would probably want to use the union member name b.i.DCbus.smooth_rx_mh
instead, when dealing with a DC bus. If you are retrieving all buses, you can use the ACbus designation
for the type, owner, name, kv, and zone fields; the contents of these fields is the same regardless of the bus
type.

Parameters
• r – [inout] A pointer to a structure of type pf_rec supplied by the calling routine.

• action – [in] A string designating the action to be performed on an intertie record. See
below for the codes and their meanings. Either upper or lower case is acceptable.

”F” Retrieves the first bus record.

”N” Retrieves the next bus record. (Name and kV must be valid.)

”G” Retrieves the rest of the bus record. (Name and kV must be valid.)

”D” Deletes a bus record. (Name and kV must be valid.)

”A” Adds a bus record. (All data fields must be valid. See the Record Formats section.)

”M” Modifies a bus record. (All data fields must be valid. See the Record Formats section.)

”O” Retrieves the solution output data. (The case must be solved and name and kV must
be valid.)

394 Chapter 2. Contents



Interactive Power Flow

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_cbus(pf_rec *r, char *action)
Retrieves, modifies, adds, or deletes continuation bus (+) data. Note that cbus data is always associated
with particular buses.

Parameters
• r – [inout] A pointer to a structure of type pf_rec, supplied by the calling routine.

• action – [in] A string designating the action to be performed on a continuation bus record.
See the table below for the codes and their meanings. Either upper or lower case is accept-
able.

”F1” Retrieves the first continuation bus record associated with a given bus (name, kV).

”N1” Retrieves the next cbus record associated with a given bus. (All ID fields must be
valid. See the Record Formats section.)

”G” Retrieves the rest of the cbus record. (All ID fields must be valid. See the Record
Formats section.)

”D” Deletes a cbus record. (All ID fields must be valid. See the Record Formats section.)

”A” Adds a cbus record. (All data fields must be valid. See the Record Formats section.)

”M” Modifies a cbus record. (All data fields must be valid. See the Record Formats sec-
tion.)

”O” Retrieves the output data. (The case must be solved; all ID fields must be valid. See
the Record Formats section.)

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_comments(pf_comments *r, char *action)
Retrieves or modifies the case name, project title, and case comments.

Parameters
• r – [in] A pointer to a structure of type pf_comments.

• action – [in] A string designating the action to be performed. See below for the codes
and their meanings. Either upper or lower case is acceptable.

”G” Retrieves the case comments.

“M” Modifies the case comments. All data is updated with the contents of the record.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_itie(pf_rec *r, char *action)
Retrieves, adds, modifies, and deletes intertie data.

Parameters
• r – [inout] A pointer to a structure of type pf_rec, supplied by the calling routine.

• action – [in] A string designating the action to be performed on an intertie record. See
below for the codes and their meanings. Either upper or lower case is acceptable.

”F” Retrieves the first intertie record.

”N” Retrieves the next intertie record. (Name1 and Name2 must be valid.)

2.11. CFLOW C API (libcflow) 395



Interactive Power Flow

”G” Retrieves the rest of the intertie record. (Name1 and Name2 must be valid.)

”D” Deletes an intertie record. (Name1 and Name2 must be valid.)

”A” Adds an intertie record. (All data fields must be valid. See the Record Formats section.)

”M” Modifies an intertie record. (All data fields must be valid. See the Record Formats
section.)

”O” Retrieves the solution output. (The case must be solved and name1 and name2 must
be valid.)

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_qcurve(pf_rec *r, char *action)
Retrieves, modifies, adds, or deletes reactive power capability curve data.

Parameters
• r – [inout] A pointer to a calling routine-supplied structure of type pf_rec.

• action – [in] A string designating the action to be performed on qcurve record. See below
for the codes and their meanings. Either upper or lower case is acceptable.

”G” Retrieves the rest of the Q curve records associated with a given bus. (Name and kV
must be valid. See the Record Formats section.)

”D” Deletes a Q curve record. (Name and kV must be valid. See the Record Formats
section.)

”M” Modifies a Q curve record. (Valid only for activation or inactivation. See the Record
Formats section.)

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_xdata(pf_rec *r, char *action)
Retrieves, modifies, and adds switched reactance (X) data.

The delete function is handled by changing the BX bus to another bus type or deleting the BX bus.

Parameters
• r – [inout] A pointer to a structure of type pf_rec, supplied by the calling routine.

• action – [in] A string designating the action to be performed on a switched reactance
record. See below for the codes and their meanings. Either upper or lower case is accept-
able.

”F” Retrieves the first xdata record in a case.

”N” Retrieves the next xdata record in a case. (Name and kV must be valid. See the Record
Formats section.)

”G” Retrieves the xdata record associated with bus_name and bus_kV.

”A” Adds an xdata record. (All required data must be valid. See the Record Formats
section.)

”M” Modifies an xdata record. (All required data must be valid. See the Record Formats
section.)

“O” Retrieves the output data. (The case must be solved; all id fields must be valid. See
the Record Formats section.

396 Chapter 2. Contents



Interactive Power Flow

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_rec_a2b(char *net_data, pf_rec *r, char *action)
Converts an ASCII record in WSCC format to a pf_rec.

Parameters
• net_data – [in] A pointer to a source string of network or output data.

• r – [in] A pointer to a structure of type pf_rec.

• action – [in] A pointer to a string designating the action to be performed. “I” Converts
network data string to binary input data. “O” Converts output data string to binary solution
data.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_rec_b2a(char *net_data, pf_rec *r, char *action)
Converts a pf_rec to an ASCII record in WSCC format.

All data fields in pf_rec must be valid.

Author
William D. Rogers

Date
1-23-1995

Parameters
• net_data – [out] A pointer to a destination string for network data.

• r – [in] A pointer to a structure of type pf_rec.

• action – [in] A pointer to a string designating the action to be performed on a bus record.
See below

”I” Writes network data record.

”D” Writes change record to delete.

”A” Writes change record to add.

”M” Writes change record to modify.

”O” Writes solution record. (The case must be solved.)

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_save_changes(char *filename)
Save a CHANGES file.

Saves to a change file the input data changes you have made to the currently resident base case data.

Parameters
filename – [in] A string representing a file name.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

2.11. CFLOW C API (libcflow) 397



Interactive Power Flow

int pf_save_netdata(char *filename, char *dialect, char *ratings, int size)
Save network data.

Save network data from a powerflow base case in ASCII format.

Parameters
• filename – [in] A string representing a file name.

• dialect – [in] A string having the following possible values: “BPA”, “WSCC”,
“WSCC1”, or “PTI”. These refer to different forms that the output file can take. See ?? for
the differences in dialects.

• ratings – [in] A string having the following possible values: “EXTENDED”, “NOMI-
NAL”, or “MIN_EXTENDED”. See ?? for a description of these options for ratings.

• size – [in] An integer representing the size of output records - either 80 or 120. The choice
of 120 is valid only with the BPA dialect.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_save_newbase(char *filename)
Save new base case.

Saves the currently resident base case in its current state to the specified filename.

Parameters
filename – [in] A string representing a file name

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_save_wscc_stab_data(char *filename, char *type)
Save WSCC Stability Data.

Saves the power flow data required for input to the WSCC Stability program in either ASCII or binary form
depending on the type argument value.

Parameters
• filename – [in] A string representing a file name.

• type – [in] A string representing the type of file format of the saved file. The type values
are either “ASCII” or “BINARY”

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_solution(void)
Solve the current case.

Causes the powerflow process (ipfsrv) to initiate a solution on the currently resident base case data.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_init(void)
Start up and initialize the powerow engine.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

398 Chapter 2. Contents



Interactive Power Flow

int pf_get_list(char *list, int listlen, enum pf_list_type type, char *data)
Retrieve list of owners, areas, bus kV’s, record types, or zones.

The list argument should be a two dimensional character array with the first dimension being the number
of areas, and the second dimension being 11 to store area names of up to 10 characters in length. For
example, for AREA_LIST, the array might be declared as

char area_names[20][11]

if you know that there are not more than 20 area names in the case. pf_case_info gives information on the
number of areas, zones, owners, etc. The listlen argument prevents the routine from exceeding the bounds
of your array.

Parameters
• list – [out] A pointer to a two dimensional character array of size [area size][11].

• listlen – [in] An integer specifying the maximum number of list elements.

• type – [in] The type of list.

• data – [in] Any additional data needed for Program Control Language query. Use “” if
none.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_area_of_zone(char *area, char *zone)
Finds the name of the area that a zone is in.

Parameters
• area – [out] A pointer to an array of 11 characters in which the area name is returned.

• zone – [in] A string holding a zone name.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_case_info(pf_case_stats *r)
Retrieve case info.

Retrieves data from a Powerflow base case and puts it in the info structure.

Parameters
r – [out] A pointer to a structure of type pf_case_stats.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

void pf_init_rec(void *r, int rtype)
Initialize pf_rec data.

Initializes a data buffer of type pf_rec to blanks and zeros, in order to clear out old data before calling one
of the pf_rec routines to store new data in it. Its use is not necessary, but is recommended.

Parameters
• r – A pointer to a structure of type pf_rec, supplied by the calling routine.

• rtype – An enumerated variable defined in ft.h

2.11. CFLOW C API (libcflow) 399



Interactive Power Flow

void pf_init_qcurve(pf_rec *r, char *type, char *name, float kv)
Initialize all P-Q curve data fields.

Initializes all P-Q curve data fields to 0 except ID fields that are initialized to the values passed as parameters.
This function is used to store ID fields for a specific bus before calling pf_rec_qcurve() to retrieve the
generator capability curve values for that bus.

Parameters
• r – [out] A pointer to a structure of type pf_rec supplied by the calling routine.

• type – [in] A string that specifies the record type (must be “QP”).

• name – [in] A string that contains the bus name.

• kv – [in] A floating point value representing the base kV.

void pf_init_itie(pf_rec *r, char *type, char *area1, char *area2)
Initialize all intertie data fields.

Initializes all intertie data fields to 0 except ID fields that are initialized to the values passed as parameters.
This function is used to store ID fields for a specific tie line before calling pf_rec_itie() to retrieve the values
for that line.

Parameters
• r – A pointer to a structure of type pf_rec, supplied by the calling routine.

• type – A string that specifies the record type (must be “I”).

• area1 – A string which contains the area 1 name.

• area2 – A string which contains the area 2 name.

void pf_init_cbus(pf_rec *r, char *type, char *owner, char *name, float kv, char *year)
Initialize all continuation bus fields.

Initializes all continuation bus data fields to 0 except ID fields which are initialized to the values passed as
parameters. This function is used to store ID fields for a specific bus before calling pf_rec_cbus() to retrieve
the continuation record values for that bus.

Parameters
• r – [out] A pointer to a structure of type pf_rec, supplied by the calling routine.

• type – [in] A string that specifies the record type (must be “+”).

• owner – [in] A string that contains the owner name.

• name – [in] A string that contains the bus name.

• kv – [in] A floating point value representing the base kV.

• year – [in] A two character string that contains the code year.

void pf_init_bus(pf_rec *r, char *type, char *name, float kv)
Initialize all bus data fields.

Initializes all bus data fields to 0 except ID fields which are initialized to the values passed as parameters.
This function is used to store ID fields for a specific bus before calling pf_rec_bus to retrieve the values for
that bus.

Parameters
• r – [out] A pointer to a structure of type pf_rec, supplied by the calling routine.

400 Chapter 2. Contents



Interactive Power Flow

• type – [in] A string that specifies the record type (either B or any bus type is legal).

• name – [in] A string that contains the bus name.

• kv – [in] A floating point value representing the base kV.

void pf_init_branch(pf_rec *r, char *type, char *name1, float kv1, char *name2, float kv2, char cid, int sid)
Initialize all branch data fields.

Initializes all branch data fields to 0 except ID fields which are initialized to the values passed as parameters.
This function is used to store ID fields for a specific branch before calling pf_rec_branch to retrieve the
values for that branch.

Parameters
• r – [out] A pointer to a structure of type pf_rec, supplied by the calling routine.

• type – [in] A string which specifies the record type (L, T, E, or specific R-type).

• name1 – [in] A string that contains the bus 1 name.

• kv1 – [in] A floating point value representing the base kV for bus 1.

• name2 – [in] A string that contains the bus 2 name.

• kv2 – [in] A floating point value representing the base kV for bus 2.

• cid – [in] A string that contains the circuit ID. For solution data, ‘*’ will retrieve the sum
of all parallel circuits.

• sid – [in] A integer value representing the section ID. For solution data, a value of 0 will
retrieve the total equivalent line.

void pf_init_area(pf_rec *r, char *type, char *name)
Initialize all area data fields.

Initializes all area data fields to 0 except ID fields which are initialized to the values passed as parameters.
This function is used to store ID fields for a specific area before calling pf_rec_area to retrieve the values
for that area.

Parameters
• r – [in] A pointer to a structure of type pf_rec, supplied by the calling routine.

• type – [in] A string that specifies the record type (must be A).

• name – [in] A string that contains the area name.

int pf_bus_exists(char *name, float kv)
Seee if a bus exists.

Author
William D. Rogers

Date
8-17-1994

Parameters
• name – [in] A pointer to a string containing the bus name.

• kv – [in] A real value representing the bus base kV.

2.11. CFLOW C API (libcflow) 401



Interactive Power Flow

Returns
Returns 0 if the bus exists; otherwise, it returns 1.

int pf_user_init_def(void)
Initialize User Analysis definitions.

Initializes the user analysis arrays in powerflow (IPF). It should be called prior to other user analysis func-
tions. It sends the command /INITDEF to ipfsrv.

Author
William D. Rogers

Date
1-6-1995

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_load_def(char *definitions)
Load User Analysis definitions into IPF.

Loads the user analysis arrays in powerflow (IPF) with the specified symbol definitions. It sends the com-
mand

/LOADDEF

, followed by a newline (

'\n'

) separated list of definitions, to powerflow.

Author
William D. Rogers

Date
1-6-1995

Parameters
definitions – [in] A pointer to a string containing User Analysis Define statements.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_sub_def(char *base)
Substitute User Analysis definitions.

Performs character string substitutions using computed base case quantities upon the tokens defined with
the >DEFINE statements within comment records sent to powerflow either through the pf_user_load_def
function or a User Analysis file. The return message is available in the global buffer reply_pf. It sends the
command

/SUBDEF, SOURCE=<name>

402 Chapter 2. Contents



Interactive Power Flow

, where name is either “BASE” or “ALTERNATE_BASE” (“ALT”).

Author
William D. Rogers

Date
1-6-1995

Parameters
base – [in] A pointer to a string designating the source base case as “BASE” or “ALTER-
NATE_BASE” (may be abreviated to “ALT”).

Returns
Returns 0 if it is successfull; otherwise, it returns -1.

int pf_user_report(char *filename, char *output, char action)
Load a User Analysis file for customized analysis listings.

Loads a user analysis file for generating customized analysis listings. The requested report is appended to
the output file, which is created if it doesn’t already exist.

Author
William D. Rogers

Date
1-6-1995

Parameters
• filename – [in] A character string representing a user analysis file name.

• output – [in] A character string representing an output report file name.

• action – [in] A string designating the action to be performed.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_define(char *symbol, char *id, char *type)
Define User Analysis Symbol.

Builds a symbol definition and loads it into the user-analysis arrays in powerflow (IPF). It sends a command
constructed as follows:

/LOADDEF
> DEFINE_TYPE <symbol_type>
LET <symbol_name> = <id_of_computed_quantity>

If blanks are part of the quantity id, substitute them with pound signs (#). All data is case insensitive.
Symbol names are limited to six characters. Use blanks or commas to separate identity items.

Author
William D. Rogers

Date
1-30-1995

2.11. CFLOW C API (libcflow) 403



Interactive Power Flow

Parameters
• symbol – A pointer to a string containing a symbol name.

• id – A pointer to a string containing quantity identity.

• type – A pointer to a string containing symbol type.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_comment(char *symbol, char *suffix, char *format)
Define User Analysis comment record.

Builds a comment record and loads it into the user-analysis arrays in powerflow (IPF). It sends a command
constructed as follows:

/LOADDEF
C <symbol_name><symbol_suffix> = $<symbol_name><symbol_suffix><format>

All data is case insensitive, however, the case is preserved. Symbol names are limited to six characters.
The suffix is optional and is used for BUS_INDEX and ZONE_INDEX data types. Use a null string (“”)
if the suffix is not applicable. The format obeys the Fortran convention and can be either floating point (i.
e. /F8.3) or text (i. e. /A7). The default is /F6.0. The format string must include the slash (/).

Comment cards constructed by pf_user_comment are designed to be processed by either pf_user_quantity
to retrieve floating point values or pf_user_string to retrieve textual information.

Author
William D. Rogers

Date
1-30-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• suffix – [in] A pointer to a string containing an index suffix.

• format – [in] A pointer to a string containing format code.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_quantity(char *symbol, char *suffix, float *quantity)
Retrieve a User Analysis quantity.

Searches the reply_pf buffer after a pf_user_sub_def function is called for “<symbol_name><index_suffix>
= “, where the suffix is optional, and scans in the floating point value that immediately follows. Comment
cards can be built with pf_user_comment or any other applicable method. The case of the symbol and
suffix must match. The suffix is optional and is used for BUS_INDEX and ZONE_INDEX data types. Use
a null string (“”) for the suffux, if the data type does not use a suffix. The suffix must include the period
(i.e. “.VK”).

Author
William D. Rogers

404 Chapter 2. Contents



Interactive Power Flow

Date
1-30-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• suffix – [in] A pointer to a string containing an index suffix.

• quantity – [in] A pointer to a float to hold the retrieved quantity.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_string(char *symbol, int length, char *info)
Retrieve for User Analysis string.

Searches the reply_pf buffer after a pf_user_sub_def function is called for “<symbol_name> = ” and scans
into info the number of immediately following characters specified by length. Comment cards can be built
with pf_user_comment or any other applicable method. The case of the symbol name must match. Where
applicable include the suffix in the symbol name string.

Author
William D. Rogers

Date
1-31-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• length – [in] An integer specifying the number of characters to scan.

• info – [in] A pointer to a destination string for the scanned data.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_branch(char *symbol, pf_rec *r, char *type)
Define User Analysis Branch Index.

Builds a symbol definition and corresponding comment card based on the data in a pf_rec structure and
the supplied symbol and type and loads them into the user-analysis arrays in powerflow (IPF). It sends a
command constructed as follows:

/LOADDEF
> DEFINE_TYPE <symbol_type>
LET <symbol_name> = <bus1_name> <bus1_kv>[*] <bus2_name> <bus2_kv>[*]
C <symbol_name> = $<symbol_name>/F15.7

Bus names and voltages are derived from the pf_rec branch structure. Blanks in the bus names are replaced
by pound signs (#). An asterisk (*) determines at which terminal the line flow is computed. If the metering
point in the branch data is 0 or 1, the first bus is selected, if 2 then the second. Symbol names are limited
to six characters and are case insensitive, but retain case for the comment card.

2.11. CFLOW C API (libcflow) 405



Interactive Power Flow

Author
William D. Rogers

Date
1-31-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• r – [in] A pointer to a structure of type pf_rec.

• type – [in] A pointer to a string indicating the quantity type.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_user_itie(char *symbol, pf_rec *r, char *type)
Define User Analysis intertie symbol.

Builds a symbol definition and corresponding comment card based on the data in a pf_rec structure and
the supplied symbol and type and loads them into the user-analysis arrays in powerflow (IPF). It sends a
command constructed as follows:

/LOADDEF
> DEFINE_TYPE <symbol_type>
LET <symbol_name> = <area1_name> <area2_name>
C <symbol_name> = $<symbol_name>/F15.7

Area names are derived from the pf_rec intertie structure. Blanks in the area names are replaced by pound
signs (#). Symbol names are limited to six characters and are case insensitive, but retain case for the
comment card.

Author
William D. Rogers

Date
1-31-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• r – [in] A pointer to a structure of type pf_rec.

• type – [in] A pointer to a string indicating the quantity type.

’P’ = INTERTIE_P

’Q’ = INTERTIE_Q

’S’ = INTERTIE_P_SCHEDULED

Returns
Returns 0 if it is successful; otherwise, it returns -1.

406 Chapter 2. Contents



Interactive Power Flow

int pf_user_bus(char *symbol, pf_rec *r, char *suffix)
Define User Analysis Bus Index.

Builds a symbol definition and corresponding comment card based on the data in a pf_rec structure and
the supplied symbol and suffix and loads them into the user-analysis arrays in powerflow (IPF). It sends a
command constructed as follows :

/LOADDEF
> DEFINE_TYPE BUS_INDEX
LET <symbol_name> = <bus_name> <bus_kv>
C <symbol_name><index_suffix> = $<symbol_name><index_suffix>/F15.7

Bus name and voltage is derived from the pf_rec bus structure. Blanks in the bus names are replaced by
pound signs (#). Symbol names are limited to six characters and are case insensitive, but retain case for the
comment card. The suffix must contain the period (i. e. “.VK”).

Author
William D. Rogers

Date
1-31-1995

Parameters
• symbol – [in] A pointer to a string containing a symbol name.

• r – [in] A pointer to a structure of type pf_rec.

• suffix – [in] A pointer to a string containing the BUS_INDEX suffix.

Returns
Returns 0 if it is successful; otherwise, it returns -1.

int pf_plot(char *cor_filename, char *ps_filename, char *options)
Create a plot.

Causes powerflow (IPF) to generate a plot. Difference plots may be made by first loading an reference
(alternate) base case with pf_load_refbase() and providing a difference plot coordinate file. pf_plot sends
a command constructed as follows:

/plot
<cor_filename>
<ps_filename>
<options>

Author
William D. Rogers

Date
7-6-1995

Parameters
• cor_filename – [in] A string representing the name of a coordinate file.

2.11. CFLOW C API (libcflow) 407



Interactive Power Flow

• ps_filename – [in] A string representing the name of the postscript file to be created.

• options – [in] An optional string (may be NULL), representing a list of comments and
options, separated by newline (“\n”). Each option must begin with an “@”” character.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_load_refbase(char *filename)
Load a reference base case.

Passes a base case filename to the ipfsrv process so that it can read and interpret the file as a “reference
base” (also referred to as an “alternate

base”). This is done prior to requesting difference plots or comparison (difference) reports. If a reference
case is currently loaded, it is overwritten and the data is lost.

Author
William D. Rogers

Date
7-7-1995

Parameters
filename – [in] A string representing a file name.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_select_base(char base)
Select primary base base or reference base base records.

Allows the pf_rec functions to access the input and solution data in either the primary base case (OLD-
BASE) loaded with pf_load_oldbase or the reference (alternate) base case loaded with pf_load_refbase.
The accessed base case initially defaults to the OLDBASE data.

Author
William D. Rogers

Date
7-21-1995

Parameters
base – [in] A character indicating which set of data other commands act upon: ‘O’ OLD-
BASE data or ‘R’ REFBASE data.

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_solve_area(char base)
Get the area interchange for an area.

Run the solution to obtain the area interchange amount. Can run for either the old base case or the reference
base case.

408 Chapter 2. Contents



Interactive Power Flow

Author
William D. Rogers

Date
3-6-1996

Parameters
base – [in] A character indicating the base case for which to calculate area interchange.

’O’ = Old base case ‘R’ = Reference base case

Returns
Returns 0 if it is successful; otherwise, it returns 1.

int pf_command(char *command)
Run PCL commands.

Passes an ASCII control file name to ipfsrv so that it can read and interpret the file.

Author
William D. Rogers

Date
5-6-1996

Parameters
command – [in] A string representing PCL commands [and data].

Returns
Returns 0 if it is successful; otherwise, it returns -1.

Variables

char pf_cflow_inbuf[]

char pf_cflow_outbuf[]

char err_buf[]

char reply_pf[]

int pf_cflow_socket

int cf_debug

group input_data
The following structures are used for input to powerflow. This is the set of CFLOW structures used by the
“pf_rec_. . . ” functions

2.11. CFLOW C API (libcflow) 409



Interactive Power Flow

group pf_rec
Read, write, and modify powerow records.

The pf_rec_ functions allow powerflow input (network data) and output (solution) data to be retrieved, as well
as allowing input data (network data) to be added, modified, or deleted.

group pf_user
The pf_user_ functions provide a means of using the User Analysis features of the powerflow.

dir /home/docs/checkouts/readthedocs.org/user_builds/bpa-ipf/checkouts/latest/include

example pf_area_of_zone.c

int cnt;
char zones[32][3]; /* array for zone list */

pf_get_list((char *)zones, 10, ZONE_LIST, "");

for (cnt = 0; cnt < 10; ++cnt)
{

char area_name[11];
int error;
error = pf_area_of_zone(area_name, zones[cnt]);
printf("zone %-5s is in area %-10s\n", zones[cnt], area_name);

}

example pf_bus_exists.c

int found;

found = pf_bus_exists(new_name, kv);

if (found == 0)
printf(" - This node already exists! %s\n", b.i.ACbus.name);

example pf_case_info.c

int error;

pf_case_stats ci;

error = pf_case_info (&ci);

if (!error)
{

fprintf (out, "Number of areas = %d\n", ci.num_areas,
"Number of zones = %d\n", ci.num_zones,
"Number of buses = %d\n", ci.num_buses,
"Number of connections = %d\n", ci.num_circuits, /* Not including␣

(continues on next page)

410 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

→˓parallels*/
"Number of lines = %d\n", ci.num_branches);

if (ci.case_soln_status == SOLVED)
fprintf(out, "This was a solved case.\n\n");

}

example pf_get_list.c

int cnt;
char owners[64][4]];

pf_get_list((char *)owners, 64, OWNER_LIST);

printf("owners=\n");

for (cnt=0; cnt < 64; ++cnt)
{

printf("%-5s",owners[cnt]);
}

example pf_init_functions.c

pf_rec r;

printf("Initialize area record == \n");
pf_init_area(&r, "A", "NORTHWEST");
printf("Type = %s Area Name = %s Scheduled export = %7.1f\n\n", r.i.area.type, r.
→˓i.area.name, r.i.area.sched_export);

printf("Initialize branch record == \n");

pf_init_branch(&r, "L", "WESTMESA", 345.0, "FOURCORN", 345.0, "1", 0);

printf("Bus1 Name = %s%5.1f Bus2 Name = %s%5.1f R = %7.1f X = %7.1f\n\n",
r.i.branch.bus1_name, r.i.branch.bus1_kv, r.i.branch.bus2_name, r.i.branch.bus2_

→˓kv, r.i.branch.r, r.i.branch.x);

int error;
pf_rec *b;

/* This function is normally used to find data for a specific bus.
pf_init_bus stores the ID fields in the structure. */
pf_init_bus (&b, "B", "SJUAN G1", 22.0);

/* Then pf_rec_bus retrieves the data. */
error = pf_rec_bus (&b, “G”);

(continues on next page)

2.11. CFLOW C API (libcflow) 411



Interactive Power Flow

(continued from previous page)

/* Gets rest of bus data (input). */
if (!error)

error = pf_rec_bus (&b, "O"); /* Gets output bus data. */

fprintf (out, "Initialize cbus record == \n");
pf_init_cbus (&r,"+","PNM", "SAN JUAN", 345.0, " ");
fprintf (out, "Bus Name = %s%5.1f Owner = %s Load = %7.1f\n\n", r.i.cbus.name, r.i.
→˓cbus.kv, r.i.cbus.owner, r.i.cbus.Pload);

fprintf (out, "Initialize itie record == \n");
pf_init_itie (&r, "I", "NORTHWEST", "BC=HYDRO");
fprintf (out, "Area 1 = %s Area 2 = %s Scheduled flow = %7.1f\n\n",
r.i.itie.area1_name, r.i.itie.area2_name, r.i.itie.sched_export);

fprintf (out, "Initialize Q=curve record == \n");
pf_init_bus (&r, "QP", "SJUAN G1", 22.0);
fprintf (out, "Bus Name = %s%5.1f Status code = %s\n\n",

r.i.qcurve.bus_name, r.i.qcurve.bus_kv, r.i.qcurve.active);

pf_init_rec(r, AREA);
pf_init_rec(r, L_LINE);
pf_init_rec(r, AC_BUS);
pf_init_rec(r, CBUS);
pf_init_rec(r, ITIE);
pf_init_rec(r, QCURVE);

example pf_load_functions.c

int error;
pf_rec br;

error = pf_load_oldbase ("43bus.bse");
printf("Loaded old base 43bus.bse, status = %d\n\n", error);

if (!error) {
error = pf_load_changes("43bus.chg");
printf("Loaded change file 43bus.chg, status = %d\n\n", error);

}

error = pf_load_oldbase ("j98cy94.bse, rebuild = ON");

pf_load_refbase("J98CY94.BSE");
pf_select_base('R');
pf_rec_branch(&br, "F")

example pf_main.c

#include "cflowlib.h"

int main(int argc, char *argv[])
(continues on next page)

412 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

{
pf_cflow_init(argc, argv);
printf("pf_load_netdata=%d\n", pf_load_netdata("bench.net"));
printf("pf_solution=%d\n", pf_solution());
pf_cflow_exit();

}

example pf_plot.c

pf_load_oldbase("A98CY94.BSE");
pf_load_refbase("J98CY94.BSE");
pf_plot("500BUS_DIF.COR", "A98CY94.PS", "");

system("print/queue=EOHQMS_PS A98CY94.PS");

example pf_put_inrec.c
The following program uses pf_put_inrec to change an input data record in Powerflow and then outputs a success
or failure message to the screen.

int error;
char record [130];

/* record needs to contain valid change, add, or delete input data */
error = pf_put_inrec ( record );
if (!error)

printf ("Successfully changed, added, or deleted input record.\n");
else

printf ("Invalid record.\n"); }

example pf_rec.c

pf_rec c, a, bus, branch;
int error, status;
char net_data[80];
FILE *out;

printf("Enter branch identifying data: ");
gets(net_data);
pf_rec_a2b(net_data, &b, "I");

pf_rec_bus(&bus, "F");
pf_rec_b2a(net_data, &bus, "I");
printf("%s\n", net_data);

pf_cflow_init( argc, argv );
out = fopen ("ipf_report.txt", "w");

/* Obtain case comments */
error = pf_rec_comments (&c, "G");
fprintf (out, "Current case is: %s Description: %s\n\n", c.case_name, c.case_

(continues on next page)

2.11. CFLOW C API (libcflow) 413



Interactive Power Flow

(continued from previous page)

→˓descrip);

fprintf (out, "%s\n", c.h[0]);
fprintf (out, "%s\n", c.h[1]);
fprintf (out, "%s\n\n", c.h[2]);
fprintf (out, "%s\n", c.c[0]);
fprintf (out, "%s\n", c.c[1]);
fprintf (out, "%s\n\n", c.c[2]);

pf_rec_branch(&branch, "O");

/* Area data */
fprintf (out, "\n******** AREA DATA ********\n\n");
cf_debug = 1;
error = pf_rec_area( &a, “F” ); /* get first area */
cf_debug = 0;

status = pf_rec_area( &a, “O” ); /* get first area output*/

while ( !error && !status )
{

fprintf (out, "Type Area Name Slack Bus NZn Export Pgen Pload Ploss␣
→˓Pexport Vmax Vmin\n");

fprintf (out, " %s %s %s%5.1f %d %7.2f %7.1f %7.1f %7.1f %7.1f %6.4f %6.4f\n",
a.i.area.type, a.i.area.name, a.i.area.sbus_name, a.i.area.sbus_kv, a.i.area.

→˓num_zones, a.i.area.sched_export, a.s.area.Pgen, a.s.area.Pload, a.s.area.Ploss,␣
→˓a.s.area.Pexport, a.i.area.max_Vpu,a.i.area.min_Vpu);

fprintf (out, "Zones in Area: %s %s %s \n\n", a.i.area.zones[0], a.i.area.
→˓zones[1], a.i.area.zones[2]);

error = pf_rec_area( &a, “N” ); /* get next area */
status = pf_rec_area( &a, “O” ); /* get next area output*/

}

pf_init_itie("I ", areaname1, areaname2);
status = pf_rec_itie (&itie, "G");

for (error = pf_rec_branch(&branch,"f1"); error == 0; error = pf_rec_branch(&branch,
→˓"n1"))
{

printf(" %s, kv= %6.1f,name2= %s, kv2= %6.1f\n",
branch.i.branch.bus1_name, branch.i.branch.bus1_kv, branch.i.branch.bus2_

→˓name, branch.i.branch.bus2_kv);
}

for (error = pf_rec_bus(&bus, "f"); error == 0; error = pf_rec_bus(&bus, "n"))
{

pf_rec_bus(&r,"o");
printf("name= %s, kv= %6.1f, vmag=%6.1f, vdeg=%6.1f\n",

bus.i.ACbus.name, bus.i.ACbus.kv, bus.s.ACbus.Vmag, bus.s.ACbus.Vdeg);
}

(continues on next page)

414 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

/* CBUS DATA */
fprintf (out,”\n******** CBUS DATA ********\n\n”); error = pf_rec_bus( &r, “F”␣
→˓); /* get first bus in case */ status = pf_rec_cbus( &r, “F1” ); /
→˓* is there a cbus record? */
while (!error) {

do {
error = pf_rec_bus( &r, “N” ); /* get next bus in case */
status = pf_rec_cbus( &r, “F1” ); /* is there a cbus record? */

} while (status);

while ( !status ) /* loop on bus with cbus record(s) */ {
status = pf_rec_cbus( &r, “O” );
fprintf (out, "Type Own Bus Name Pload Qload Gshunt Bshunt ␣

→˓Pgen Qgn-mx Qmin \n");
fprintf (out, " %s %s %s%5.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f\n\n

→˓",
r.i.cbus.type, r.i.cbus.owner,r.i.cbus.name,r.i.cbus.kv, r.s.cbus.Pload,r.

→˓s.cbus.Qload,r.s.cbus.Gshunt,r.s.cbus.Bshunt, r.i.cbus.Pgen ,r.i.cbus.Qgen_Qmax,r.
→˓i.cbus.Qmin);

status = pf_rec_cbus( &r, “N1” );
}

}

close(out);

example pf_rename.c

int error;
error = pf_rename_area ("NORTHWEST", "NW AREA");
error = pf_rename_bus ("BELL", 69, "BELL1", 60.6);
error = pf_rename_zone ("7", "N7");

example pf_save.c

error = pf_save_changes ("mychanges.chg");
error = pf_save_netdata ("mychanges.net","WSCC", "NOMINAL", 80);
error = pf_save_newbase ("mychanges.bse");
error = pf_save_wscc_stab_data ("mychanges.asif", "ASCII");

2.11. CFLOW C API (libcflow) 415



Interactive Power Flow

2.12 Network Diagrams

2.12.1 Overview

IPF has two different network diagram presentations. One is the display you see in the GUI graphics, and the other is
the hard copy map. The display is for convenience in accessing system data graphically - it does not represent what the
plotted map will look like, nor does it need to be ‘pretty’. The hard copy diagram is designed for reports, documentation,
and analysis. It can be generated as a report from the graphic display or produced in a batch environment. This section
addresses the hard copy diagram which is designed for reports, documentation, and analysis.

Both presentations use the same coordinate file format. The most important coordinate data, like bus icon and name
locations, and line bending points, can be edited graphically from the GUI by moving things around and saving the
altered coordinate file. However, you will have to plot out the map in order to see how your changes have affected the
hard copy appearance.

The basic diagram shows power system components modeled in a power flow study. The diagram is less detailed than
a Powerflow listing, but may have more (or different) information than the graphic display. It shows essential bus and
branch solution data. The diagram also shows identification data. For example, it shows date, case identification, pro-
gram version, and the options used to generate the diagram. The diagram can be enhanced by adding to the coordinate
file such items as:

• A legend.

• A border.

• A control block for case identification, signatures, etc.

• A case title heading.

• Selected tie line flows and loss summary.

• An inset showing detail in a selected area.

• Any PostScript language objects.

These items will show up on the map plotted from the GUI, even though many of them cannot be added or edited from
the GUI. For details on all the hard copy diagram options and capabilities, and the usage of the ipfplot and ipfbat
programs, see ipfplot and ipfnet.

2.12.2 Input Requirements, Output, and Operation

The Plot function is a set of FORTRAN subroutines within ipfmain, which build a dynamic PostScript objects file of
references to a static PostScript objects file (pfmaster.post). The same routines are called by the Print Plot command
issued from the GUI, a command file entered via ipfbat or the GUI, and by the batch program ipfplot. The dynamic
file, which is built by “anding” a coordinate file with powerflow data, defines which data will appear on a diagram. The
static ASCII PostScript file describes how data will appear on a diagram.

When you load a coordinate file, for example name.cor, into the GUI, the program copies the contents of the file into
name.tmp. Any changes you make during your interactive session are reflected in the latter file. They will disappear
when you exit IPF unless you Save the coordinate file before exiting.

When you select the Print Plot item on the File menu, IPF uses the intersection of the name.tmp file and the currently
loaded system data to define which data will appear on the diagram. It then combines this with the file pfmaster.post,
which describes how data will appear on the diagram. The result is a name.ps file, which is sent to a PostScript-capable
printer using the Printer Destination string you have selected.

416 Chapter 2. Contents



Interactive Power Flow

Input Requirements

The input requirements are:

• A coordinate file, built via the GUI and/or an ASCII text editor.

• A solved system network, either from a base case file or currently loaded in IPF.

• The static PostScript file (pfmaster.post) defining how data will be shown on the

diagram.

Output

A dynamic PostScript file, which is built by the Plot program, is appended to the static PostScript file and sent to a
PostScript interpreter (printer or computer display) to produce a diagram.

Plot Program Operation

GUI: Select Print Plot from the File pull-down menu. You can also change the options for the particular plot, by
selecting Diagram Options and/or Page Options. These override the options which may be specified in the coordinate
file.

ipfbat: See ipfnet.

ipfplot: Enter ipfplot coordinate_file base_file_1 [base_file_2]. This is a strictly batch process
which does not require the GUI. A coordinate file name and one solved base file must be provided. The second base
file is required only for difference maps.

However it is invoked, the Plot program determines which information should appear on the diagram by examining
the coordinate file. It then searches the Powerflow data for bus, branch, area, and intertie data that are identified in the
coordinate file. When a match is found, the Powerflow and coordinate data are combined and formatted into a dynamic
PostScript file to activate procedures on the static PostScript file. In addition to bus, branch, transformer, area, and
intertie records, all other coordinate file records — options, draw, >define, comment, and PostScript — are processed
by the Plot program and formatted to invoke procedures on the static PostScript file.

2.12.3 Coordinate File

The coordinate file used by the diagram program is the same file that is generated and used by the GUI display. Since
the coordinate file is an ASCII file, it can be generated by any ASCII text editor. The records in that file are described
in this section.

The Coordinate file consists of primary coordinate data records and supportive coordinate data records. All coordinates
are first quadrant positive Cartesian coordinate values in centimeters. The lower left corner of the diagram is coordinate
(0,0). The primary coordinate data records those which specify the bus and branch (bend) locations. These records
are:

• Bus Record B

• Line Record L

• Transformer Record T

• Area Record A

• Intertie Record I

The Coordinate file may also include supportive record types to produce a diagram suitable for long term documenta-
tion. These records are:

2.12. Network Diagrams 417



Interactive Power Flow

• File Identification Record [ID COORD

• Options Record O

• Define Record >DEFINE_TYPE

• Comment Record C

• Draw Record D

• PostScript Record P

• Trailer Record 9 or (*EOR)

For complete details on all of the coordinate file records, see ??.

File Indentification Record - [ID COORD

The file identification record signifies the beginning of a set of coordinate records. See the table below. Options are set
to their default condition when this record is encountered. One such record is required at the beginning of the coordinate
file, but it may optionally contain several [ID COORD records and their associated coordinate record sets. Multiple [ID
COORD records may be used to insert a control block, legend, or an inset of a detailed section of the diagram.

Table 2.12.1: File Identification Record Format
Column Format Description
1-9 A9 [ID COORD
9-90 Not used by Plot program, available for user notes.

Options Record - O

Options affect the general appearance of a diagram and determine which Powerflow data will be displayed for each bus
and branch on a diagram.

The default option values can be overridden by options specified in the coordinate file. If a coordinate file is currently
loaded in the GUI, and the options are changed via the Page Options or Diagram Options menus, these will override
(replace) those originally specified in the file. If the file is saved, the new options will be saved in it.

The = and , and blank field delimiters may be used interchangeably. Option names may be upper or lower case. Upper
case characters shown in the tables indicate the minimum mandatory characters for identifying the option.

Table 2.12.2: Option Record Format
Column Format Description
1-2 A 2 OP - identifies an option record.
3-90 A 88 Free field description of option, see tables below for details.

Here is an example of how to specify options in the coordinate file::

OPtions OR=L
Options SCale_factor=0.9,0.9
OP BUs_detail=Bus_name,Powerflow_name

Page Options These are general appearance options. Several of them are interdependent. They are applied in the
following order:

• Orientation

• Scale

418 Chapter 2. Contents



Interactive Power Flow

• Offset

• Border with transparency flag

• Box for identification

• Case location

• Comment location

• Coordinate file name location

• Size

• Legend location

The option values can be set on the Diagram Options menu.

Table 2.12.3: General Appearance (Page) Options
Option Description
SIze=XX.XX,YY.YYDEFAULT = 21.59 by 27.94 cm (8.5 by 11 inches).
ORienta-
tion=Landscape
ORienta-
tion=Portrait

DEFAULT=Portrait.

OFf-
set=XX.XX,YY.YY

Lower left of diagram relative to lower left of page. DEFAULT = 0.0, 0.0.

TRans-
parency=Transparent
TRans-
parency=Opaque

DEFAULT for insets is Opaque. Main diagram is always opaque.

SCale_factor=X.XX,Y.YYDEFAULT = 1.0, 1.0.
BOr-
der=XX.XX,YY.YY

Locates upper right corner of border. DEFAULT = no border.

BX=XX.UL,YY.UL,XX.LR,YY
.LR

Locates an identification box. XX.UL and YY.UL locate the upper left corner of the box. If XX.LR
and YY.LR are zero (0), the box is positioned in the lower right corner of the diagram. Default
coordinates are established for CR (coordinate file), CAse_name, and COmments. These locations
can be overridden. A standard border is drawn as near the edge of the paper as most PostScript
printers will allow. DEFAULT = no identification box.

CAse_name=XX.XX,YY.YYLocates case name from Powerflow program. DEFAULT = no case name.
COm-
ments=XX.XX,YY.YY

Locates comments from user entry and Powerflow program. DEFAULT = no Powerflow comments.

CR=XX.XX,YY.YYLocates coordinate file name DEFAULT = relative to BX.
LG=XX.XX,YY.YYLocates upper left corner of legend box. DEFAULT = no legend.

Diagram Options
The options described in the table below determine which powerflow values will be displayed on a diagram.

Those selections that are ON by DEFAULT may be turned off in one of two ways. Some, such as the bus name selection,
may be toggled to the abbreviations on the bus coordinate records, full bus name, or full bus name and base kv. Others,
such as generation, may be turned off by preceding the value of interest with NO_. For example, to not show generation::

Option BUs_detail=NO_Generation
or
O BU=NO_G

2.12. Network Diagrams 419



Interactive Power Flow

Fig. 2.12.1: Page Options Dialog Box

420 Chapter 2. Contents



Interactive Power Flow

You can also specify on the bus coordinate record whether or not the generation and shunt reactance at this bus should be
displayed. See bus coordinate records in Table ?? and Figure ?? for details. The no display indicator on the coordinate
records can be overridden with a draw more or alwaws draw option for generators or shunt reactors. For example,:

Op BUs_detail=AL_Generators
Op BUs_detail=MO_Generators
Option BUs_detail=AL_Shunt

Fig. 2.12.2: GUI Diagram Options

Some of the diagram options are independent; others are mutually exclusive. Look at the GUI menu above to quickly
determine which is which. Those with diamond buttons are exclusive; those with square buttons can be turned on or
off in any combination. This applies no matter whether the options are specified from the menu or in the coordinate
file.

2.12. Network Diagrams 421



Interactive Power Flow

Table 2.12.4: Powerflow Values Options
Option Description
DIagram_type=Pq_flow DIagram_type=Mva/I DIagram_type=Loss DIa-
gram_type=Interchange DIagram_type=Coordinates Diagram_type=Loading
%

See flow detail; DEFAULT
Maximum values P and/or Q set
via P_S, Q_S
No flow data % current or %
MVA rating

VAlues=Normal VAlues=Difference DEFAULT case1 - case2
FLow_detail=P_Sending_end FLow_detail=Q_Sending_end
FLow_detail=P_Receiving FLow_detail=Q_Receiving

DEFAULT DEFAULT

BUs_detail=Bus_name,Abbreviation BUs_detail=Bus_name,Powerflow_name
(and kV) BUs_detail=Voltage,kV BUs_detail=Voltage,Per Unit
BUs_detail=Angle BUs_detail=Generation BUs_detail=Shunt
BUs_detail=Load BUs_detail=Total_flow of undrawn branches
BUs_detail=Outages

DEFAULT
DEFAULT
DEFAULT DEFAULT DE-
FAULT
Not yet implemented.

BRanch_detail=Trans_taps BRanch_detail=Compensation
BRanch_detail=Parallels,Combined BRanch_detail=Parallels,Separate
BRanch_detail=Outages

DEFAULT
Not yet implemented.

File Management This option is used to ‘include’ a separate file of coordinate data into the current file that you are
plotting. CFLOW reports can be incorporated into the diagram by this mechanism. Multiple files may be included, if
desired. This option is not presently available from the GUI. That is, if in the GUI you load a coordinate file which
includes “Option File” records, these will be ignored. However, there is a means of including a single auxiliary coordi-
nate file in a GUI plot. Under the File pull down menu, select Plot Options, then User Comments. Include a comment
which is the name of the file, preceded by an ampersand (&). See section :ref:`` for more information.

The ABERDEEN INSET in Figure 5.8 was created with an & record.

The included file should not be a complete, independent coordinate file. For example, if it has a [ID COORD record,
none of the file will be included. If it contains any options which have already been defined, these will produce warning
messages and will have no effect. Options which are not defined in the main file can be defined in the included file;
they will be applied to the entire diagram.

The included file must be terminated with a (*EOR) record, or its last line will be lost.

Table 2.12.5: File Management Option
Option Description
File=filenameCoordinate data from the specified file will be inserted into the current file. (This feature has not yet

been implemented in the GUI.)

PostScript Records

PostScript, >Define, Comment, and Draw records are processed in the order specified by the user. For example, a
PostScript record can be used to change the font for comment records. A comment record may or may not define
coordinates. If coordinates are not defined, the comment is printed below the previous comment record. A series of
Draw records or a series of PostScript records is often required to accomplish a specific task.

PostScript commands, columns 3 - 82 of the PostScript records, are sent directly to the PostScript file. They have
the complete versatility of the PostScript language (PSL). A typical use is to change fonts within a series of comment
records or to add simple graphics to a diagram. These records could also be generated, inserted, or edited by a CFLOW
program (see also Comment Records, below).

422 Chapter 2. Contents



Interactive Power Flow

Table 2.12.6: PostScript Record Format
Column Format Description
1 A 1 P - identifies a PostScript record.
3-82 A 80 Any valid PostScript command including commands defined in pfmaster.post

>Define Records

The define records associate solution values to variables that can be manipulated and printed within comment records.
Section user-analysis provides an in-depth discussion of this feature. See the table below for the format of >DEFINE
records.

Table 2.12.7: Define Record Format
Column Format Description
1-7 A 7 >DEFINE — identifies a define record.
1-90 A 90 See user-analysis, /USER- ANALYSIS section, Symbol Definitions.

Comment Records

Comment records may display simple text or may be used in conjunction with >DEFINE records to display Powerflow
values.

They may also be used in conjunction with CFLOW, to create mini-reports on the printed map. Your CFLOW program
can edit a coordinate file directly, or create/edit an auxiliary file containing comment records, which is included in the
main file(s) with an OPtion = FIle record (see also PostScript records, above).

Table 2.12.8: Comment Record Format
Column Format Description
1 A 1 C - identifies a comment record.
3-14 2F 6.2 X, Y coordinates of comment. DEFAULT - after previous comment.
15-90 A 76 Comments.

2.12. Network Diagrams 423



Interactive Power Flow

Draw Records

Draw records are used to draw straight lines such as borders and boxes on a diagram.

Table 2.12.9: Draw Record Format
Column Format Description
1 A 1 D - identifies a draw record.
3-14 2F 6.2 X, Y coordinates.
15 I 1 1 = draw or 2 = move to specified coordinates.
16-27 2F 6.2 X, Y coordinates.
28 I 1 1 = draw or 2 = move to specified coordinates.
29-40 2F 6.2 X, Y coordinates.
41 I 1 1 = draw or 2 = move to specified coordinates.
42-53 2F 6.2 X, Y coordinates.
54 I 1 1 = draw or 2 = move to specified coordinates.
55-66 2F 6.2 X, Y coordinates.
67 I 1 1 = draw or 2 = move to specified coordinates.
68-79 2F 6.2 X, Y coordinates.
80 I 1 1 = draw or 2 = move to specified coordinates.

Bus Coordinate Data

The bus coordinate data describes where and how the Powerflow bus values will be displayed on the diagram. See the
table and card below for the format of the bus coordinate data record.

424 Chapter 2. Contents



Interactive Power Flow

Table 2.12.10: Bus Coordinate Data Format
Col-
umn

For-
mat

Description

1 A 1 B — Identifies the Bus coordinate record. This record type is created when you place a bus graphically.
2 I 1 Display flag: 0,Blank - Display the bus symbol. 1 - Do not display the bus symbol, but print the name.

This is accessed by the Hide Bus and Show Bus buttons in the Bus Coord Edit menu.
3-
10

A 8 Bus name to match Powerflow data. Used for identification.

11-
14

F
4.0

Bus kv to match Powerflow data. Used for identification.

15-
22

A 8 Name abbreviation to print on diagram. This can be edited from the Bus Coord Edit menu.

23 I 1 Print bus voltage relative to bus name: 1 - over name 2 - right of name 3 - below name - this is the
GUI-generated default 4 - left of name 5 - do not print the voltage 6 - print the voltage, but no name

24-
35

2F
6.2

X, Y of center of bus symbol. This changes whenever you move a bus in the GUI display.

36-
47

2F
6.2

X, Y of the lower left corner of the bus name (if other than default). This changes whenever you move
a bus name.

48-
50

F
3.0

Angle (in degrees) of generator symbol (0 degrees assigns X > 0, Y = 0 position Angle > 0 moves
counter clockwise). An angle of 0 is a flag to not display the generator. GUI-generated default is 150
degrees.

51-
53

F
3.0

Angle of reactance symbol. An angle of 0 is a flag to not display the reactor. GUI-generated default
is 120 degrees.

54-
55

A 2 Bus symbol shape identifier: Blank - round symbol - this is the default from GUI. HB - horizontal bar,
length = radius x 2 VB - Vertical bar User may add other symbols corresponding to symbols added in
master PostScript file.

56-
59

F
4.2

Bus symbol radius in centimeters.

Fig. 2.12.3: Bus Coordinate Data Record

2.12. Network Diagrams 425



Interactive Power Flow

Branch Coordinate Data

The branch coordinate data describes the bending points in a branch and identifies which segment will show the flow
and transformer symbol or compensation symbol. See the table and card record below for the format of the branch
coordinate data record.

Column 27 requires additional explanation. Several alternative routes may be established for printing parallel circuits
separately. The most preferred path is 1, next 2, etc. When the option to display parallel circuits separately is on and
there are as many or more routings as circuits, the circuits are shown separately.

Table 2.12.11: Branch Coordinate Data Format
Col-
umn

For-
mat

Description

1 A 1 L or T identifies a Line or Transformer. This record type is generated when you place a bending
point in a line or transformer.

2 Not used.
3-10 A 8 Bus1 name.
11-14 F 4.0 Bus1 kV.
15-22 A 8 Bus2 name.
23-26 F 4.0 Bus2 kV.
27 I 1 Circuit number for routing parallel circuits separately. Not available from GUI.
28 Not used.
29-30 I 2 Segment for annotation with flow. A negative number means do not show arrow and flow. Not

available from GUI.
31-42 2F

6.2
X, Y coordinates for 1st bending point.

43-54 2F
6.2

X, Y coordinates for 2nd bending point.

55-66 2F
6.2

X, Y coordinates for 3rd bending point.

67-78 2F
6.2

X, Y coordinates for 4th bending point.

79-90 2F
6.2

X, Y coordinates for 5th bending point

Fig. 2.12.4: Branch Coordinate Data Record

426 Chapter 2. Contents



Interactive Power Flow

Area Coordinate Data

The area record is used to define the location of an area interchange bubble. See the table and figure below for the
format of the area coordinate data record.

0, blank — Display the area symbol. 1 — Do not display the area symbol, but print the name. 3-12 A 10 Area name —
Name of area as shown in IPF. 13 Not used. 14-23 A 10 Abbreviation — A name appearing on the diagram. If blank,
no name is printed. 24-35 2F 6.2 X,Y of center of area symbol. 36-37 A 2 Area symbol shape identifier. (The default
— blank — is a cartouche. The user may add other symbols corresponding to symbols added in the master PostScript
file.) 38-41 F 4.2 Radius — Radius of circular segments of cartouche. 42-45 F 4.2 Width — Width of linear segment
of cartouche. 46-90 Not used.

Fig. 2.12.5: Area Coordinate Data Record

Intertie Coordinate Data

The intertie record is used to locate the bending points of an intertie connecting two areas. This record becomes
necessary when crowding of interties occurs. See table and figure below for the format of the intertie coordinate data
record.

2 Not used. 3-12 A 10 Area 1 — Name of first area. 13 Not used. 14-23 A10 Area 2 — Name of second area. 24-28
Not used. 29-30 I 2 Segment for annotation with flow. A negative number means do not show arrow and flow. 31-42
2F 6.2 X, Y coordinates for 1st bending point. 43-54 2F 6.2 X, Y coordinates for 2nd bending point. 55-66 2F 6.2 X, Y
coordinates for 3rd bending point. 67-78 2F 6.2 X, Y coordinates for 4th bending point. 79-90 2F 6.2 X, Y coordinates
for 5th bending point.

2.12. Network Diagrams 427



Interactive Power Flow

Fig. 2.12.6: Intertie Coordinate Data Record

Annotation Record

The annotation record can be used to document a data file. The record is ignored by the diagram program. You can
also temporarily remove a coordinate record from service by inserting a “!”” or “#”” before it.

an annotation record. 2-90 A Any ASCII printing characters.

Trailer Record

The trailer record signifies the end of the usable data. Any records beyond the trailer record are ignored by the program.
See table for the format of the trailer record.

2.12.4 PostScript Procedures

This section is for the advanced user who wants to customize the appearance of the diagram by modifying PostScript
procedures.

The PostScript procedures are stored in ASCII form on the pfmaster.post file. The procedures that are most likely
to be changed by the user are described below.

Coordinate Data Within the Postscript Procedures File

The PostScript procedures file is used as a data repository for selected coordinate data. A % (percent sign) as the first
character of a record instructs the PostScript interpreter to process the record as a comment. The FORTRAN program
reads columns 2-79 of these comment records as coordinate data records. These records must be within the first 100
records of the pfmaster.post file and contain the following delimiters::

%[xx Beginning of a block 'xx' of coordinate format data
%(end) End of block
%[End End of all coordinate data in pfmaster.post repository

428 Chapter 2. Contents



Interactive Power Flow

Diagram Identification Data

Diagram identification data is retrieved when the user requests the label box (BX) option. Typically, the identification
includes:

• Powerflow case name.

• Date of Powerflow run.

• Version of Powerflow program used to create case.

• Description of Powerflow case.

• Time of Powerflow run.

The identification data in the pfmaster.post file is of the form shown below. Refer to the pfmaster.post file for
the identification data in your installation.:

%%Begin data read by psplot
%[BX WSCC will change the first 7 characters to: %[BPABX
%>DEFINE_TYPE OLDBASE LET cAse=CASE
%>DEFINE_TYPE OLDBASE LET dAte=DATE
%>DEFINE_TYPE OLDBASE LET pFvr=PFVER
%>DEFINE_TYPE OLDBASE LET dEsc=DESC
%P /Helvetica-Bold findfont 10 scalefont setfont
.
.
.
%Option SSpecific Comments=20
%(end)
%[End BPA data block read by psplot --DO NOT REMOVE THIS RECORD
%[WSCCBX WSCC will change the first 4 characters of this record to: %[BX
%! ****** emulated stuff *************
%>DEFINE_TYPE OLDBASE LET tIme=TIME
%P /Helvetica findfont 07 scalefont setfont
.
.
.
%Option SSpecific Comments=03
%(end)
%[End WSCC data block read by psplot --DO NOT REMOVE THIS RECORD

Legend

The legend is in PostScript form and is used when the legend option (LG) is selected. The legend identifies line patterns
with kV ranges. The user may examine the procedure acLine for a description of the operands passed to that operator.

The legend data in the pfmaster.post file is of the form shown below.:

/legndId
{
gsave
x-legnd y-legnd translate
0 -4.50 cmtr translate
newpath
0 0 moveto 0 4.50 cmtr lineto 2.2 cmtr 4.50 cmtr lineto 2.2 cmtr 0 cmtr linet

(continues on next page)

2.12. Network Diagrams 429



Interactive Power Flow

(continued from previous page)

o
closepath stroke
/Helvetica-Bold findfont 10 scalefont setfont
0.4 cmtr 4.00 cmtr moveto
(LEGEND) show
/Helvetica-Bold findfont 08 scalefont setfont
[ 0.10 cmtr 3.25 cmtr 2.10 cmtr 3.25 cmtr ]
() () () 1 0 ( 0 - <100 kv) () () 0 099 acLine
[ 0.10 cmtr 2.50 cmtr 2.10 cmtr 2.50 cmtr ]
() () () 1 0 (100 - <200 kv) () () 0 199 acLine
[ 0.10 cmtr 1.75 cmtr 2.10 cmtr 1.75 cmtr ]
() () () 1 0 (200 - <231 kv) () () 0 230 acLine
[ 0.10 cmtr 1.00 cmtr 2.10 cmtr 1.00 cmtr ]
() () () 1 0 (231 - <500 kv) () () 0 499 acLine
[ 0.10 cmtr 0.25 cmtr 2.10 cmtr 0.25 cmtr ]
() () () 1 0 (500 kv and up) () () 0 500 acLine
grestore
} def

Line Pattern Data

Line pattern data is stored in the array LinePattern. The length must be defined in LinePatternArray. The put
operator stores data in the array element indicated by the indexes 0, 1, 2, 3, etc.

The first two values in the array are the voltage range for the line pattern. Next is an array with a nested array. The
nested array is line pattern, and the other value in the offset as required by the operator `setdash. The last value in
LinePattern is the line width.

To be within a voltage range, a voltage must be greater than or equal to the minimum voltage specified and less than
the maximum voltage specified.

The line patterns for outages and interchange lines are similar but without the voltage range specification.

The line pattern data in the pfmaster.post file is::

%***** LINE PATTERN DATA****************
/LinePatternArray 5 def
/LinePattern LinePatternArray array def
/LinePatternCount LinePatternArray 1 sub def
LinePattern 0 [200 231 [ [3 6] 0 ] 1.00 ] put
LinePattern 1 [500 2000 [ [1 1000] 0 ] 1.00 ] put
LinePattern 2 [100 200 [ [5 1] 0 ] 1.00 ] put
LinePattern 3 [231 500 [ [1 5] 0 ] 1.00 ] put
LinePattern 4 [0 99999 [ [1000 1] 0 ] 1.00 ] put

%***** Line Pattern for Outage Line ******************

/LinePatternOut [ [ [1 4] 0 ] 1.00 ] def
/curve-offset 8 def

%***** Line Pattern for Interchange Line ******************

/LinePatternInt [ [ [1 10000] 0 ] 1.00 ] def

430 Chapter 2. Contents



Interactive Power Flow

Bus Overvoltage/Undervoltage Range Values

Acceptable bus voltage range data is stored in the array VoltLim. The length must be defined in VoltLimArray. The
put operator stores data in the array element indicated by the indexes 0, 1, 2, 3, etc.

The first two values in each element of the array are a voltage range. The second two values are the minimum and
maximum acceptable per unit voltages for buses in that voltage range.

To be within a voltage range, a voltage must be greater than or equal to the minimum voltage specified and less than
the maximum voltage specified.

%***** BUS OVER-VOLTAGE/UNDER-VOLTAGE DATA *********
/VoltLimArray 5 def /VoltLim VoltLimArray array def /VoltLimCount VoltLimArray 1 sub def VoltLim
0 [230 500 0.95 1.052] put VoltLim 1 [500 2000 1.00 1.100] put VoltLim 2 [115 230 0.95 1.052] put
VoltLim 3 [ 0 115 0.95 1.052] put VoltLim 4 [ 0 9999 1.00 1.000] put

Bus Symbols

The user may add new bus shapes or change the existing ones. The default bus shape is a circle. A vertical bar (VB)
and horizontal bar (HB) are also available. See ?? and ?? below. Bus symbols added in the pfmaster.post file can
then be associated with bus records through the bus shape and scale factor fields on the bus coordinate record.

A typical bus symbol definition in the pfmaster.post file is the vertical bar bus symbol::

shapeIndex (VB) eq % begin drawing vertical bar
{
[] 0 setdash
obj-line-width setlinewidth
newpath % clear current point so it doesn’t show
-.075 cmtr -1 cmtr bsScale mul moveto
-.075 cmtr 1 cmtr bsScale mul lineto
.075 cmtr 1 cmtr bsScale mul lineto
.075 cmtr -1 cmtr bsScale mul lineto
closepath
gsave
buscolor aload pop setrgbcolor % set backgroung color
fill
grestore
fgcolor aload pop setrgbcolor % set foreground color
exit
} if % done drawing vertical bar

Area Symbols and Bubble Plots

The user may add new area shapes or change the existing one. The default area shape is a cartouche (round-cornered
box). See ?? and ??. Area symbols added in the pfmaster.post file can then be associated with area records through
the area shape and scale factor fields on the area coordinate record.

The default area symbol definition in the pfmaster.post file is the cartouche or bubble::

%------- The enclosed code may be customized at the user's pleasure -----

bubFlg 0 ne % do not draw cartouche
{ exit } if

(continues on next page)

2.12. Network Diagrams 431



Interactive Power Flow

(continued from previous page)

shapeIndex ( ) eq % begin drawing cartouche
{
bbSz1 0 eq {/bbSz1 0.80 cmtr def} if % setup default size for bubble
bbSz2 0 eq {/bbSz2 1.50 cmtr def} if % setup default size for bubble
[] 0 setdash
bub-wall-width setlinewidth
newpath % clear current point so it doesn't show
/bbSz3 bbSz2 2 div def
bbSz3 neg 0 bbSz1 90 270 arc
bbSz3 bbSz1 neg lineto
bbSz3 0 bbSz1 270 90 arc
closepath
gsave
bgcolor aload pop setrgbcolor % set background color
fill
grestore
fgcolor aload pop setrgbcolor % set foreground color

/xTxt xTxt bbSz3 sub % calculate new x text coordinates
bbSz1 3 div sub def

/yTxt yTxt 0.5 cmtr add def % calculate new y text coordinates

exit
} if % done drawing cartouche

%-------- The enclosed code may be customized at the user's pleasure -----

2.12.5 Diagram Components

Example diagrams are shown in ?? and ??.

The hard copy diagram allows buses, branches, area, and interchange symbols to be intermixed on a diagram. Typically,
however, bus/branch and area interchange diagram are drawn separately.

The diagram consists of two types of components:

• Supportive components such as borders, diagram identification, legend, and comments.

• Primary diagram components such as buses, branches, areas, and interchange flows.

Supportive Diagram Components

The example diagrams illustrate the two different types of default options, one with an identification box in the lower
left corner (BPA standard) and the other with case id and headers at the top of the page (WSCC standard).

A border is drawn as close to the edge of the paper as printers allow.

The information below the border identifies the type of diagram, the date and time the diagram was created, the Pow-
erflow program version that created the diagram, the time that the Powerflow case was created, and the name of the
coordinate file.

In example 1, the case name, the date the case was created, and the Powerflow program version that created the case are
shown on the first line within the box. A 20-character description of the case is on the second line. Comments entered

432 Chapter 2. Contents



Interactive Power Flow

by the user at the time the diagram was created follow. Note that the last user-entered comment on the bus/branch
diagram begins with an ampersand (&). This comment instructs the program to read additional coordinate data from
the file aberdeeninset.cor.

Blocks of text such as LOSSES on the bus/branch diagram and INTERTIE SCHEDULED ACTUAL on the area interchange
diagram are the product of >DEFINE and C records in the coordinate file.

The LG (LeGend) option selects and locates the legend shown on the bus/branch diagram.

In example 2, an IPS-like three line title appears above the map. The first line is composed of the case name, description,
date, and program version. The other two lines were entered as headers in the PF ID/Description menu (corresponds
to command /HEADER in Power Flow Control (PFC)).

Primary Diagram Components: Bus/Branch Diagrams

The majority of the options previously discussed in the Options Record - O section refer to bus/branch diagrams. These
options, along with the coordinate file, customize the diagram to the user’s specifications. In general, the diagram
consists of bus and branch symbol groups and Powerflow solution values. Area and intertie information may appear
on the same diagram, but there will be no connection between the two graphs, as is shown below.

Fig. 2.12.7: Diagram Example

The bus symbol group and values consists of the following:

• Bus symbol — Circle, bar, etc. In the figure above, the bus symbol is fully-shaded (black) — see CHEHALIS
115 — for undervoltage buses and half-shaded (gray) — see OLYMPIA 500 — for overvoltage buses.

• Identification — Powerflow name and kV or abbreviation. The figure below shows buses with the abbreviated
form of identification. The CHEHALIS 230 bus is abbreviated CHEHALIS.

• Voltage and angle — Printed above, below, or to the left or right of identification. In the figure above, the
CHEHALIS 230 bus voltage is 238 kV and angle -27 degrees.

• Bus load - Printed above, below, or to the left or right of voltage and angle. In the figure above, the load at
CHEHALIS 230 is 13 MW and 4 Mvar.

2.12. Network Diagrams 433



Interactive Power Flow

• Total flow on branches to buses not shown on diagram — printed above, below, or to the left or right of load. In
the figure above, the net flow at the CHEHALIS 230 bus on branches that are not shown on the diagram is 39
MW into the bus and 17 Mvar out of the bus.

• Generator symbol — Circle connected to bus with a short line segment. Power generation in MW is printed
above the line and reactive generation is printed below the line. The figure above shows the generation at PAUL
500 is 1340 MW and -47 Mvar. A close inspection of the data would show the actual generation is on a low
voltage bus at the same location as PAUL 500.

• Shunt Reactive — Capacitor or inductor symbol connected to a bus with a short line segment. Maximum reac-
tance available at the bus is printed above the line, and actual reactance used is printed below the line. The figure
above shows that 116 Mvar of capacitive reactance is available and 109 Mvar is used at OLYMPIA 230.

The branch symbol group and values consist of the following:

• Line segment symbol - Voltage-coded line segment representing a line or transformer connection between buses.
Note the relationship to the legend.

• Arrow symbol - Indicates direction of real power flow through the branch. In the figure above, a solid-shaded
arrow (black) indicates the branch is loaded at 100% or more of a rated capacity.

• Overload indicator - Flags circuits that are approaching an overload condition. Branches that are approaching
a nominal, thermal, bottleneck, or emergency loading are flagged with an N, T, B, or E under the arrow. The
actual current or Mva flow in the line or transformer is before the numeric flag and the rating follows the flag.
The figure above shows the PAUL 500 to OLYMPIA 500 line carrying 287 amps and is over 90% of the line’s
thermal rating of 270 amps. The solid arrow indicates the line is over 100% of the rating. (This is contrived data,
of course.)

• Branch flow - Real and reactive power (MW and Mvar) Branch flow is shown above the arrow. Real and reactive
sending and receiving end flows are differentiated as follows. MW values are simply shown as numbers. Mvar
values are shown within parentheses. Receiving end values are shown within square brackets. Negative values
indicate a flow opposite the arrow direction. In the figure above, branch flow is shown above the arrow. Real and
reactive sending and receiving end flows are differentiated as follows. MW values are simply shown as numbers.
Mvar values are shown within parentheses. Receiving end values are shown within square brackets. Negative
values indicate a flow opposite the arrow direction. The power flowing from PAUL 500 to OLYMPIA 500 is 252
MW and -92 Mvar as measured at the sending end.

• Branch flow — MVA and current. An alternative to showing MW and Mvar is to show MVA for transformers
and current for lines. The value shown is the maximum for any section of the circuit. If the maximum is at a
point other than the sending end, an R is appended to the flow. If a circuit is composed of both line sections and
transformer sections, the maximum current for the line section and maximum MVA for the transformer section
will be shown. The receiving or sending/receiving end flag is eliminated.

Example: .. image:: ../img/Example_500_amp_650_mva_Branch_Flow.png

This example indicates 500 amps in a line section and 650 MVA in a transformer.

Example: .. image:: ../img/Example_1000_amp_Branch_Flow.png

• Branch flow - Real and reactive power loss. Real and reactive losses in MW and Mvar are shown above the arrow.

Example: .. image:: ../img/Example_Real_Reactive_Branch_Loss.png This example indicates a loss of 1.23
MW and 0.05 Mvar in the branch.

• Parallel circuits - Show number of parallel circuits represented by branch (default). The number of parallel
circuits carrying the flow on the diagram is shown in brackets below the line. The figure above shows two
parallel circuits between PAUL and SATSOP carrying a total of 260 MW and -92 Mvar.

• Parallel circuits - Show flow on each circuit represented (option). The flow on each of the parallel circuits can be
shown separately. The figure above shows two parallel circuits between CHEHALIS 230 and CHEHALIS 115.
Each circuit is carrying 14 MW and -2 Mvar.

434 Chapter 2. Contents



Interactive Power Flow

• Transformer symbol (shown at tip of arrow).

• Transformer taps (shown below transformer). The fiture above shows the CHEHALIS 115/230 transformers with
taps of 115.50 and 234.75.

• Series compensation symbol (shown at tip of arrow).

• Series compensation value - Percent of line compensation shown below capacitor symbol. The figure shows the
CHEHALIS 230 to OLYMPIA 230 line with 45% compensation.

Primary Diagram Components: Interchange Diagram

The area interchange diagrams are quite simple, showing the area data within the area symbol (bubble), and flow data
above the lines connecting areas.

The area symbol and data consists of the following:

• Area symbol — Cartouche (bubble).

• LOAD — Summation of all loads within the specified area.

• LOSS — Summation of all losses within the specified area.

• GEN — Summation of all generation within the specified area.

• SI (Scheduled Interchange) — Export of power from the specified area.

The interchange symbol and data consists of the following:

• Interchange symbol — Line with arrows and values for Scheduled Interchange, Actual Interchange, and Circu-
lating Flow.

The values are shown above the arrows.

The example above shows that 3280 MW was scheduled from NORTHWEST to PG AND E. The actual interchange
was 2735 MW. The circulating flow, defined as actual interchange minus scheduled interchange, is 545 MW from
PG AND E to NORTHWEST.

Primary Diagram Components: Difference Diagram

The format of difference diagrams is very similar to the format of the standard diagram. The standard diagram uses
only one case, an active case. The difference diagram uses two cases, an active case and an alternate case.

Displayed values are calculated as active case values minus alternate case values. Arrows indicate the direction of
power flow in the active case.

If there are a different number of circuits in the active and reference cases, the number of circuits is in each case shown
below the circuit.

Example

This example shows the active case has 3 circuits and the alternate case has 2 circuits in parallel.

2.12. Network Diagrams 435



Interactive Power Flow

Fig. 2.12.8: Bus Branch Diagram with Inset

436 Chapter 2. Contents



Interactive Power Flow

Fig. 2.12.9: Area Interchange Diagram

2.12. Network Diagrams 437



Interactive Power Flow

2.13 Calculating Line Impedance

The line impedance subroutine was been extracted from BPA’s Electromagnetic Transients Program (EMTP) and mod-
ified for computing a balanced pi-equivalent line section. You can find a clone of BPA’s EMTP The line impedance
calculation feature is invoked from the branch data dialog. See the screenshot, diagram, and table below. It calculates
the pi-equivalent quantities from the conductor type, conductor bundling, and tower geometry. The following applies
to all calculations:

• There is continuous transposition of phases.

• Resistivity is calculated at 25 degrees Celsius.

• Earth resistivity is constant at 100 ohm-meters.

The Line Impedance dialog box consists of three panels for data.

• Conductor Values. This is the scrollable list of conductor data, which is usually imported from a line constants
data file.

• Edit Conductor. This is the only means to edit data.

• Calculate Impedance. This output panel displays the pi-equivalent data.

2.13.1 Description of Conductor Data Fields

Each physical conductor is characterized by a number of items that you need to specify. The following list describes
these items:

UNITS Allows you to specify either metric or English units.

BASEKV The base value for the voltage in kV.

BASE MVA The base value for the power in MVA. (Default is 100.0.)

NAME Common conductor bird names are hard-coded. In Edit mode, selecting a name from the button menu au-
tomatically transfers O.D.``(outside diameter), ``SKIN, and RESIS data to the pertinent field. If any of these
fields are modified, the conductor name becomes “other.”

IPHASE The phase number (an integer) to which this conductor belongs. Specify as zero for a ground wire (ground is
phase number zero by definition). If more than one conductor is specified with the same phase number, this means that
those conductors are to be bundled (electrically connected in parallel). Use numbers 1, 2, etc., without any missing
(unused) entries, when you number the phases. In general, 1, 2, 3 pertain to circuit1, phases a, b, c, respectively; 4, 5,
6 pertain to circuit2, phases A, B, C, respectively.

SKIN A field that is specified with the ratio T/D, where: T is the thickness of the tubular conductor. D is the outside
diameter of the tubular conductor. For a solid conductor, use 0.5.

RESIS The dc resistance of the conductor in ohms/kilometer if metric or ohms/mile if English.

DIAM Outside diameter of the a tubular conductor in centimeters if metric or inches if English.

HORIZ Horizontal separation of the center of the conductor from some reference line in meters if metric or feet if
English. The location of the horizontal reference line is arbitrary. Distances to the right of the center line are positive,
while those to the left are negative.

VTOWER Vertical height of the conductor above the ground at the tower in meters if metric or feet if English.

VMID Vertical height of the conductor above the ground at mid-span (midway between two towers) in meters if metric
or feet if English.

438 Chapter 2. Contents

https://github.com/ahmadabdullah/BPA_EMTP


Interactive Power Flow

Fig. 2.13.1: Line Impedance Calculation Dialog Box

2.13. Calculating Line Impedance 439



Interactive Power Flow

Note: The average height of the line is calculated by the following equation if both the VTOWER and VMID fields
are specified non-zero.

𝑉𝑀𝐼𝐷 + [(𝑉 𝑇𝑂𝑊𝐸𝑅− 𝑉𝑀𝐼𝐷)/3] = 2/3𝑥𝑉𝑀𝐼𝐷 + 1/3𝑥𝑉 𝑇𝑂𝑊𝐸𝑅

If either data field is left blank, the blank field defaults to the other field. In effect, the user specifies the average height.

SEPAR ALPHA Leave this blank unless the automatic bundling option is desired.

FREQ The frequency, 𝑓 , of the line impedance calculation in units of Hertz.

DIST The length of the transmission line under consideration in kilometers if metric or miles if English.

NBUND Leave this blank unless the following automatic bundling option is desired.

AUTOMATIC BUNDLING OPTION

Rather than specifying each conductor of a bundle individually, there is an automatic bundling option that allows a
single conductor data to suffice for specifying the entire bundle. This can be used for a “regular” bundle, where by
definition all component conductors are identical, and such conductors are also assumed to be uniformly spaced around
the circumference of a circle.

Automatic bundling uses the data fields SEPAR, ALPHA, and NBUND, which are otherwise left blank. The “con-
ductor” data then becomes “bundle” data according to the following specifications:

SEPAR The separation between adjacent conductors in the bundle in centimeters if metric or inches if
English.

ALPHA The angular position of the first conductor (or any conductor) of the bundle in units of degrees.
Positive angles are measured counter-clockwise as shown in Figure C-1.

NBUND The number of conductors that make up the bundle. Or, if you specify by name, separ, and alpha,
nbund will be supplied by the program. (For names, see table above under Bundle at the 500 kV lines.)

2.13.2 Output Values

Considerable data is required to compute the pi-equivalent for a single segment. The line impedance dialog is most
effective when importing files containing line impedance data.

A typical file contains ASCII data in free-field format. The file types are .lcd for “line conductor data.” The following
is an example.

/GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION
UNITS = < ENGLISH | METRIC >, DISTANCE = < miles | km >
BASEKV = <basekv>, BASEMVA = <basemva>, FREQUENCY = <freq>
CONDUCTOR = 1 .3636 .05215 1.602 -20.75 50. 50. 0.0 0.0 0
CONDUCTOR = 1 .3636 .05215 1.602 -19.25 50. 50. 0.0 0.0 0
CONDUCTOR = 2 .3636 .05215 1.602 -0.75 77.5 77.5 0.0 0.0 0
CONDUCTOR = 2 .3636 .05215 1.602 0.75 77.5 77.5 0.0 0.0 0
CONDUCTOR = 3 .3636 .05215 1.602 19.25 50. 50. 0.0 0.0 0
CONDUCTOR = 3 .3636 .05215 1.602 20.75 50. 50. 0.0 0.0 0
CONDUCTOR = 0 .5 2.61 0.386 -12.9 98.5 98.5 0.0 0.0 0
CONDUCTOR = 0 .5 2.61 0.386 12.9 98.5 98.5 0.0 0.0 0

The usual scenario involves the following steps.

1. Import a relevant .lcd file using the Use Saved button.

440 Chapter 2. Contents



Interactive Power Flow

Fig. 2.13.2: A Six Bundle Conductor

2.13. Calculating Line Impedance 441



Interactive Power Flow

Fig. 2.13.3: BPA Conductor Bundles
442 Chapter 2. Contents



Interactive Power Flow

2. Edit the file to reflect the geometric and physical attributes of the line under consideration.

3. Calculate the pi-equivalent data. Steps 2 and 3 may be iterated as long as necessary to eliminate errors.

4. Export the modified .lcd file using the Save Values button.

5. If the results are acceptable, automatically transfer the positive sequence values back to the line dialog by pressing
the OK button. (The zero sequence values are for inspection only.)

6. If the results are not acceptable, press the Close button. No values are transmitted back to the line dialog by a
Close action.

2.13.3 Calculating the Impedance

After you have supplied all the necessary values for the line impedance calculations, you can click on the Calculate
Impedance button in the Line Impedance Calculation dialog box. The program fills in six numbers in per unit values
having the following meanings:

R/Z1 transfer Real part of the positive sequence transfer impedance per unit.

X/Z1 transfer Imaginary part of the positive sequence transfer impedance per unit.

R/Z1 shunt Half value of the real part of the positive sequence shunt admittance per unit.

X/Z1 shunt Half value of the imaginary part of the positive sequence shunt admittance per unit.

R/Z0 transfer Real part of the zero sequence transfer impedance per unit.

X/Z0 transfer Imaginary part of the zero sequence transfer impedance per unit.

2.14 DC Line Modeling

The following describes the data representation of a DC line as used in IPF. A typical configuration of the network is
shown.

Fig. 2.14.1: Two Pole, Two Terminal DC Line Conguration

Each DC line requires two DC buses, a single DC line and two commutating buses, each of which is connected to the
DC bus with a commutating transformer.

Representation of the commutating transformer conforms to the ac network; one transformer is required for each bridge.
They are parallel connected in the ac network, necessitating either separate transformer data records or an equivalent

2.14. DC Line Modeling 443



Interactive Power Flow

transformer which has the correct parallel impedance and MVA rating. As shown in the diagram, the commutating
transformers must be LTC, specifically type R, subtype blank, controlling the DC bus, and oriented such that the tap
range encompasses the commutating bus base kV. The magnitude of the DC bus voltage to be controlled is automatically
determined from the DC line parameters.

Assuming nominal taps, the DC no-load voltage Vdo available from each converter bridge is approximated by the
formula.

𝑉𝑑𝑜 = 1.35 * 𝐸𝑣 * 𝑐𝑜𝑠(𝛼)

where 𝛼 is the firing angle at the rectifier and the extinction angle at the inverter. 𝑉𝑑𝑜 is the no-load direct voltage and
𝐸𝑣 is the effective voltage at the DC bus. The actual voltage is a chopped sinusoid.

The full load direct voltage will be less. Normal representation of the DC line usually models the positive and negative
poles as separate but parallel DC lines. This scheme permits asymmetrical operation of the DC line. For example, one
bridge may temporarily be out of operation. In this case, one pole may have three bridges while the other has only two.

With this scheme, the model may be as shown as follows.

Fig. 2.14.2: Single Pole, Two Terminal DC Line

In the former scheme the dc line quantities are pole-to-pole. In the latter scheme, the quantities are pole-to-neutral.
However, the direct voltage must always be positive on the line data record.

When using the pole-to-neutral scheme, the direct voltage of each pole must correspond to the number of bridges in
operation. It is recommended that the allocation of the total dc power to each pole should result in no net neutral
current, that is, the current in each pole must be equal but opposite.

An example will clarify this. Assume that the normal direct voltages is 800 kV pole-to-pole with six bridges in opera-
tion, or 133 kV/bridge. It is desired to find the voltage and power in each pole required to transport 600 MW with one
negative bridge out of operation. This situation is shown as follows

444 Chapter 2. Contents



Interactive Power Flow

Fig. 2.14.3: One Negative Bridge Out of Operation

2.14. DC Line Modeling 445



Interactive Power Flow

For zero neutral current, 𝐼+𝑑 = 𝐼−𝑑 (with positive values assigned in the direction shown)

𝐼𝑑 =
𝑝𝑑𝑐

𝑉𝑑𝑐𝑝𝑜𝑙𝑒−𝑡𝑜−𝑝𝑜𝑙𝑒
=

600𝑀𝑊 * 1000𝑘𝑉/𝑀𝑊

667𝑘𝑉
= 900𝑎𝑚𝑝𝑠

𝑃+
𝑑𝑐 = 𝑉 +

𝑑𝑣 * 𝐼
+
𝑑𝑐 = 400𝑘𝑉 * 900𝑎𝑚𝑝𝑠

= 360, 000𝑘𝑊 = 360𝑀𝑊

𝑃−
𝑑𝑐 = 𝑉 −

𝑑𝑣 * 𝐼
−
𝑑𝑐 = 267𝑘𝑉 * 900𝑎𝑚𝑝𝑠

= 240, 000𝑘𝑊 = 240𝑀𝑊

Assuming the DC line was modeled for six-bridge operation, the only changes required to take a bridge out of service
would be modification of the following quantities:

• Positive and negative pole DC line power on the LD record.

• Negative pole DC line voltage on the LD record.

• Delete one of the parallel commutating transformers at each end of the negative pole DC line.

• Change the number of bridges for both converter buses.

2.15 Network Reduction

This section gives a detailed description of the network reduction method and solution options.

2.15.1 Method of Reduction

This program reduces a large sparse network into a smaller equivalent network by Gaussian decomposition. The original
network is linearized about the operating point and is expressed by the current equation:[︂

𝐼1
𝐼2

]︂
=

[︂
𝑌11 𝑌12

𝑌21 𝑌22

]︂ [︂
𝑉1

𝑉2

]︂
(2.15.1)

where: 𝐼1 is the complex current net injection matrix, 𝑌 the complex nodal admittance matrix, and 𝑉 the complex
nodal voltage matrix. The subscripts 1 and 2 pertain to the eliminated and retained portions of the network, respectively.
For simplicity, the matrix is reordered as shown. We may separate the partitioned matrix equations in Eq.2.15.1.[︀

𝐼1
]︀
=

[︀
𝑌11

]︀ [︀
𝑉1

]︀
+

[︀
𝑌12

]︀ [︀
𝑉2

]︀
(2.15.2)[︀

𝐼2
]︀
=

[︀
𝑌21

]︀ [︀
𝑉1

]︀
+

[︀
𝑌22

]︀ [︀
𝑉2

]︀
(2.15.3)

We may solve for
[︀
𝑉1

]︀
from Eq.2.15.2. [︀

𝑉1

]︀
=

[︀
𝑌11

]︀−1 [︀
𝑉1

]︀
+

[︀
𝑌22

]︀ [︀
𝑉2

]︀
and then substitute the expression into Eq.2.15.3.[︀

𝐼2
]︀
=

[︀
𝑉21

]︀ [︁[︁[︀
𝑌11

]︀−1 [︀
𝐼1
]︀
−

[︀
𝑌11

]︀−1 [︀
𝑌12

]︀ [︀
𝑉2

]︀]︁]︁
+

[︀
𝑌22

]︀ [︀
𝑉2

]︀
Rearranging terms, we have [︀

𝐼2
]︀
−
[︀
𝑌21

]︀−1 [︀
𝐼1
]︀
=

[︁[︀
𝑌22

]︀
−

[︀
𝑌21

]︀ [︀
𝑌11

]︀−1 [︀
𝑌12

]︀]︁ [︀
𝑉2

]︀
or [︀

𝐼2
]︀
𝑒𝑞 =

[︀
𝑌22

]︀
𝑒𝑞

[︀
𝑉2

]︀
(2.15.4)

446 Chapter 2. Contents



Interactive Power Flow

where: [︀
𝐼2
]︀
𝑒𝑞 =

[︀
𝐼2
]︀
−
[︀
𝑌21

]︀ [︀
𝑌11

]︀−1 [︀
𝐼1
]︀

(2.15.5)[︀
𝑌22

]︀
𝑒𝑞 =

[︀
𝑌22

]︀
−
[︀
𝑌21

]︀ [︀
𝑌11

]︀−1 [︀
𝑌12

]︀
(2.15.6)

The matrix operations in Eq.2.15.5 and Eq.2.15.6 have the following interpretation:

Equivalent injection = original injection + distributed injection

Equivalent admittance = Original admittance + distributed admittance + equivalent branches

Equations Eq.2.15.5 and Eq.2.15.6 have interesting topological interpretations. Some notation is necessary so the
following definitions apply:

Envelope node

A retained node with at least one adjacent node in the eliminated system.

Internal node

A retained node with all adjacent nodes in the retained network.

Equivalent branch

A fictitious branch between two envelope nodes which effectively represents the reduced net-
work as seen from those nodes.

Inherent in the reduction is the connectedness of the network and the preserved identity of the current equations. An
eliminated node is connected (not necessarily directly) to several envelope nodes. Any injected current on that node
becomes branch current in the eliminated system. After deducting losses, it finally reaches the envelope nodes and
is reconverted into an equivalent injection. The distribution of eliminated injections is determined by the admittance
of the eliminated system. By superposition, the injections from all eliminated nodes are distributed to the envelope
nodes. This reflects the second term on the right side of equation Eq.2.15.5. This does not imply, however, that the
equivalent injections are identical to the branch currents and could also be obtained by arbitrary cutting of the network.
The reasons will be explained in examples to follow.

The equivalent branches introduced between the envelope nodes after reduction reflect the admittance seen from the
envelope nodes and into the eliminated network and finally to other envelope nodes. It is similar to the delta branches
introduced in a wye-delta conversion. The value of the equivalent branches is found in the second term in the right side
of equation Eq.2.15.6.

The branch data is originally submitted in the form of equivalent pi’s which are used to construct the nodal admittance
matrix Y. In general, the reverse process is not unique. The figure below illustrates the form of the equivalent pi-branches
obtained.

In the figure below, a nine-node network is reduced. The distributed injections and equivalent branches introduced are
emphasized.

Three options are available for disposal of the generation and load of eliminated nodes:

1. Generation and load assumed constant current.

2. Generation assumed constant current, load assumed constant admittance.

3. Generation and load assumed constant admittance

These options are illustrated by the examples in the figure below. For simplicity, losses are ignored and a DC model is
used.

In all examples, the equivalent branch flow represents the sum of three components:

1. The power looping into the eliminated system and back out to the retained system.

2.15. Network Reduction 447



Interactive Power Flow

Fig. 2.15.1: Equivalent Pi-Branches

448 Chapter 2. Contents



Interactive Power Flow

Fig. 2.15.2: Network Reduction

2.15. Network Reduction 449



Interactive Power Flow

Fig. 2.15.3: Eliminated Node Generation and Load Disposal

450 Chapter 2. Contents



Interactive Power Flow

2. The flow of generation within the retained system through an envelope node to the distributed loads of the equiv-
alent system.

3. The flow of distributed generation on the envelope nodes to loads within the retained system.

The difference between network reduction and network cutting is seen in component 1 above. This component is found
by assuming all generations and loads within the eliminated system are identically zero. Thus, in equation Eq.2.15.5,
𝐼1 = 0 and [︀

𝐼2
]︀
𝑒𝑞 =

[︀
𝐼2
]︀

(2.15.7)

The branch flow in this case is strictly due to the differences of voltages between envelope nodes, i. e., looping. This
is the important distinction between reduction and cutting.

2.15.2 Description of Reduction

The nodal admittance matrix is retrieved from the base file and selective elimination is performed first upon all elimi-
nated nodes and then partially upon the retained nodes.

A complete pass merges the data from the reduced current matrix and the reduced admittance matrix with the system
data from the base file. Eliminated data is purged and equivalent branches and distributed injections are added to the
data. Concurrent with this pass, a simple injection check is performed on the envelope nodes. The net injection of the
nodes is compared with the original values. Any mismatches are errors and will be flagged.

Special consideration is given to the distributed shunt admittances. The envelope nodes which receive these admittances
may be subtype Q. In such a case, this portion of the shunt admittance is not adjustable for voltage control. To accomplish
this, a special continuation bus subtype, +A, was created, to which all distributed injections and shunt admittances are
added. In the power flow output listings, this portion of the admittance is flagged “EQUIVALENT” to confer distinction
over other adjustable susceptances.

Upon completion of the reduction, all equivalent branches and injections are added to the system data and all data
in the eliminated system is permanently deleted. A new base case is created, updated, and must be solved. Thus, a
/SOLUTION and /NEW_BASE command must follow any network reduction. If desired, subsequent changes could be
applied.

An example setup for doing a network reduction with bpf is shown in Reduction Case Example.

The program is written such that the method of determining the base case is irrelevant to the options that may be
performed. Once a base case is defined and solved, any of the options for a base case may be exercised. Thus, further
network reduction could be performed upon the already reduced system. Proper position of the appropriate control
cards give the user complete flexibility.

2.15.3 Program Control Options

There are seven options that the user may exercise; they are all specified by qualifiers within the /REDUCTION command
set.

1. Admittance cutoff (MIN_EQUIV_Y).

2. Disposition of injections (elimination mode: ELIM_MODE, final mode: ULT_MODE).

3. Retain generators by “REI” scheme (REI_CLUSTERS, ELIM_MODE).

4. Retain area interchange nodes (KEEP_AI_SYSTEM).

5. Retain all generators (RETAIN_GEN).

6. Optimal network determination (OPTIMAL_REDU)

7. Minimum generator cutoff for “REI” equivalent (ELIM_MODE).

2.15. Network Reduction 451



Interactive Power Flow

These options are discussed in the following paragraphs.

Admittance Cutoff

Assume that the retained network has n nodes in which m (m < n) nodes define the envelope. Assume furthermore
that there is a path from any envelope node into the eliminated network and back to any other envelope node. Then,
inherent in the reduction, there will result an equivalent branch between any pair of envelope nodes. The total equivalent
branches added will be

𝑚(𝑚− 1)

2

This total can become large. Many equivalent branches added between the most relatively remote pair of envelope
nodes will have a branch impedance excessively large and presumed negligible. The admittance cutoff is a parameter
that the user may choose in eliminating these branches from the generated reduced system data. It is defined as

Admittance Cuttoff = 1
𝑅+𝑗𝑋𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

For example, the value 0.001 will exclude all equivalent branches with an equivalent impedance of 1000 p.u. ohms or
more.

Disposition of Injections

The disposition of injections of eliminated nodes has, in all, 12 different combinations of options. Each combination
is unique with its inherent advantages and disadvantages.

The injections are divided into three parts: (1) generation, (2) load, and (3) shunt admittance. Each of these injections
has two modes of disposition during reduction and three additional modes ultimately. The transition of a single injection
is shown in below.

Fig. 2.15.4: Injection Disposition of Eliminated Nodes

452 Chapter 2. Contents



Interactive Power Flow

Reduction Mode

The two possible modes of disposition during reduction are constant current and constant admittance. A summary of
each option with its inherent characteristics follows:

Generation:

• Constant current has improved convergence characteristics; retains identity as generation.

• Constant admittance appears as fictitious negative impedance; has major effect on passive equivalent network.

Load:

• Constant current retains identity of load

• Constant admittance has slightly better convergence characteristics; has major effect on passive equivalent net-
work.

Shunt admittance:

• Constant current avoids negative impedances in the equivalent network.

• Constant admittance preserves the identity of the passive network.

Ultimate Mode

After equation Eq.2.15.6 has been solved for 𝐼2𝑒𝑞 and 𝑌22𝑒𝑞, the question arises: How should the separate components
of 𝐼2𝑒𝑞 be disposed to their ultimate state?

From Figure 5-4 we have three options to dispose 𝐼; namely 𝑃 , 𝐼 , or 𝑌 . A summary of each is described below.

Generation and load:

• Constant power is typical and preserves the identity of generation or load.

• Constant current is preferred and has superior convergence characteristics.

• Constant admittance is the least preferred and has poor accuracy.

Shunt admittance:

• Constant power is atypical and is available for compatibility only.

• Constant current is the same as constant power.

• Constant admittance is preferred and is most realistic to a passive network.

Summary

The recommended disposition is therefore summarized in the table below.

Table 2.15.1: Disposition of Components
Quantity Reduction Mode Ultimate Mode
Generation I I
Load I I
Shunt Admittance Y Y

2.15. Network Reduction 453



Interactive Power Flow

2.15.4 REI Equivalent

One disadvantage inherent in reduction involves the properties of eliminated generators. The power injections are
converted into current injections using the steady-state solution voltages. Every eliminated generator therefore becomes
identical to a bus with fixed real and reactive injection, but without fixed voltages typical of BQ nodes with reactive
inequality constraints. Consequently, the eliminated system loses its voltage regulation capacity. System changes near
the border nodes of reduced equivalent systems often converge to voltage profiles quite different from the full system.
The obvious remedy is to reinstate these generators or, alternately, to preserve their regulating characteristics.

The normal option of retaining generators has been unsatisfactory. A network having 1600 nodes that is reduced to
a system of 600 nodes may also include about 200 retained generators and an extremely disproportionate number of
equivalent branches. The reduced equivalent system is typically about 75 percent of the size of the full network and
nearly defeats any merits gained in reduction.

The “REI” equivalent is an innovative alternate to preserving eliminated generators directly. The initials mean Radial
Equivalent Independent. It is a simple scheme in which several eliminated generators are connected to a common
ground node having zero voltage but isolated from the ground of the rest of the system. This ground node is then
tied directly to an equivalent generator. The branch admittance from the ground node to all the generators and to the
equivalent node are determined such that no real or reactive power is gained or lost. A simple resistive network as
shown in the fibure below demonstrates the procedure.

Fig. 2.15.5: Example of Network and Its REI Equivalent

The example above has moved the current injections at nodes 2 and 3 in (a) back to an equivalent node 5, which has
3A injection. The current flowing from 4 to 2 is 2A; from 4 to 3 is 1A. The power loss in the branches is

𝑃 = 𝐼242𝑅42 + 𝐼243𝑅43 + 𝐼254𝑅54

= 22(−1.75) + 12(−1.833) + 32(0.981) = 0𝑤𝑎𝑡𝑡𝑠

This zero power loss is deliberate. It is termed the zero power balance. Introduction of the REI system has not changed
the total system losses.

454 Chapter 2. Contents



Interactive Power Flow

Although this example demonstrates the procedure involved, it does not illustrate the merits in preserving sparsity.
Only in large networks does this become apparent. Consider the network in the figure below.

Fig. 2.15.6: Direct and Indirect Generator Preservation in Eliminated Network

The letter “b” in the figure above is the number of border nodes in the network. The letter “g” is the number of generators
in the eliminated network. If they are saved directly and the rest of the network is eliminated, the number of equivalent
branches is at worst.

𝑁𝑏𝑟 =
𝑔(𝑔 − 1)

2
+ 𝑔𝑏+

𝑏(𝑏− 1)

2

However, if an REI equivalent is obtained instead, 𝑔 = 1 and

𝑁 ′
𝑏𝑟 = 𝑏+

𝑏(𝑏− 1)

2

Typical numerical values are 𝑔 = 10, “math:b = 15. Then 𝑁𝑏𝑟 = 225 and 𝑁 ′
𝑏𝑟 = 120. This is nearly a 50 percent

reduction in the number of equivalent branches.

2.15. Network Reduction 455



Interactive Power Flow

2.15.5 REI Clusters

In the figure of the previous example, all of the border nodes will be normally fully interconnected. The total number of
branches is easily computed by b(b-1)/2 where b is the number of border nodes. If b is large, say 50, then 50*49/2 = 1225
equivalent branches will result during this elimination. (The same number would occur without the REI equivalents.)
However, if the area interchange system is retained, the eliminated system becomes clustered with a dramatic reduction
in the number of equivalent branches.

Fig. 2.15.7: Small System Network (Areas and Tie Lines Shown)

A typical equivalent of the figure above might normally retain area A in full detail, and would include all the tie line
nodes and area slack buses of the remaining system. The rest of the system is replaced with an equivalent. This area
interchange system permits the eliminated system to be assigned clusters (a minimum of one cluster per area). Each
cluster is assigned an “REI” equivalent generator to replace all the eliminated generators.

Defining clusters does not decrease the number of eliminated generators nor decrease the number of border nodes.
However, it isolates the interconnections from one REI equivalent to another. For example, suppose that the previous
example was split into two clusters defined with the following bus counts:

= 5𝑔2 = 5𝑔1 + 𝑔2 = 1

= 7𝑏2 = 8𝑏1 + 𝑏2 = 1

𝑁 ′
𝑏𝑟 = (𝑏1 +

𝑏1(𝑏1 − 1)

2
) + 𝑏2 + (

𝑏2(𝑏2 − 1)

2
) = 64

456 Chapter 2. Contents



Interactive Power Flow

Comparing this with the previous example of 10 generators and 15 border nodes, this is nearly a 50 percent reduction
in the number of equivalent branches from the REI equivalent without clusters.

2.15.6 Coherency Clusters

In some applications, the generators equivalenced by the area interchange clustering may not be the desired group-
ing. Specifically, if the reduced network is to be used with a transient stability program, the coherent groups may be
determined by other factors such as size or voltage level. In this application, the coherent groups can be specified indi-
vidually by additional data as shown in the figure below. The data may either supplement or complement the normal
REI clustering.

The set of data cards illustrated in the figure above follow immediately the control card SAVE_BUSES or after the last
bus following the control cards INCLUDE_BUSES or EXCLUDE_BUSES. The name of the equivalent generator (coherent
equivalent) must be unique; i. e., it cannot be any bus already in the system. The names of the coalesced generators
may be any bus already defined in the network. It may be eliminated or retained (in which case elimination will become
mandatory).

It may also be already assigned to another REI equivalent cluster. Any errors encountered will

be described with diagnostics and the program will exit.

2.15. Network Reduction 457



Interactive Power Flow

2.15.7 Using REI Equivalents

The ELIM_MODE command requests REI equivalencing of eliminated generators. An additional parameter specifies the
minimum PGEN for a bus to be normally coalesced. Larger values of PGEN will exclude the smaller generators from
being coalesced. Care should be exercised when requesting coalesced generators, since table overflow will occur if
more than 99 generators are coalesced into a single equivalent.

The equivalent generators are made type BQ with a scheduled voltage computed for zero power balance. Names such
as “EQUIV 1” are program generated and pertain to the clusters in which they reside. However, if “COH” data is
submitted, the generator names are as specified in the data. The zone of an equivalent generator is randomly selected
to be any zone of one of the coalesced generator.

2.15.8 Optimal Network Determination

When not using the REI equivalent, the number of equivalent branches may become excessively large and compromise
any advantages obtained by network reduction, unless the retained network is judiciously chosen. If the optimal feature
is selected using the OPTIMAL_REDU command, the retained network specified by the input data will be interpreted as
the “minimum” retained system. Nodes selected for actual elimination will contribute to a definite reduction in system
size. Thus, the optimal feature will expand the retained system if necessary to minimize the network size.

2.15.9 REDUCTION Command

This control card requests a network reduction to be performed on the base case or change case that has been defined.
It generates an unsolved, reduced equivalent base case. Other commands must eventually follow to obtain the new
solution and any desired outputs. However, system data could follow the /REDUCTION to update the reduced case.

The reduced system is composed of internal and enveloping retained nodes. The internal nodes undergo no change
during the reduction. The enveloping nodes are those which have branches into the reduced system. However, these
branches are replaced with equivalent branches connected to other enveloping nodes which simulate the reduced system.
In addition, any nodal injection is distributed to the enveloping nodes in the form of continuation bus data.

All distributed injections and equivalent branches are flagged with the ownership code ***. This emphasizes their
fictitious nature; however, they are valid system data and should be treated as such.

2.16 Retained Network Definition

The network to be reduced is obtained from a solved base case. The retained system is defined by the user in the INPUT
file. Five options are available to the user as shown in the figure below.

Each of the options 1 through 5 are affected by the unique control cards described in upper case characters in the blocks
in the figure above. Their formats are described in the following paragraphs.

2.16.1 Reduction Cards

The reduction cards specify the retained systems. There are several options available. 1. Zone Selection. The zones
which normally define geographical areas may be used to define the retained system. All buses within these zones are
then retained. The format is essentially “free-field”. Commas separate the different zones and a period terminates the
list. Any blanks are ignored unless immediately preceded by a comma or a period. The command >SAVE_ZONES
must begin in column 1. If the zone list is too long to be contained on a single card, continuation cards must be used,
in which a blank appears in column 1 and the zone list continued. 2. Base kV Selection. The retained system may
be selected as the set of all buses with base kV’s matching the specified set. As with the previous card, the format is
essentially free-field. However, decimal points may be part of the base kV, necessitating a double period to terminate

458 Chapter 2. Contents



Interactive Power Flow

Fig. 2.16.1: Retained Network Input Options

2.16. Retained Network Definition 459



Interactive Power Flow

the list. The command >SAVE_BASES must begin in column 1. Continuation cards are permitted. If they are used,
a blank must appear in column 1 as the base kV list continues. 3. Zone Selection Subjected to Base kV’s. This is a
combination of steps 1 and 2 described previously. Each of the zones selected is further stipulated to certain base kV’s.
Recognition is acknowledged that different zone/base kV combinations may be desirable, and several zone-base KV
cards are permitted. The format is similar to steps 1 and 2 above. The difference is that the last zone (there may be
only one) is followed by a comma and the words >SAVE_BASES. Continuation cards are permitted. 4. Inclusion and
Exclusion of Buses to Retained System. The general criteria of saved zones, saved bases, or both is recognized as too
general to adequately define all retained systems. Provisions permit the system thus defined to be enlarged or contracted
by specifying individual buses which are to be included into or excluded from the retained system. The retained system
is expanded with the control card. >INCLUDE_BUSES beginning in column 1 and followed with separate bus cards. The
bus card need only contain the B in column 1, and the bus name and base kV in columns 7-18. All other fields are
ignored. The list of included buses is terminated when a card without a B in column1 is encountered. The retained
system is contracted with the control card >EXCLUDE_BUSES beginning in column 1 and followed with separate bus
cards as described previously. 5. Individual Bus Selection. In lieu of options 1. through 4.described previously, the
retained system could be identified by individually specified bus cards. This request is initiated with the control card
>SAVE_BUSES beginning in column 1. Each retained bus is then individually specified with a bus card. Only the bus
identification fields need be specified, that is, the B in column 1 and the bus name and base kV in columns 7-18. All
other fields will be ignored. The list continues until a card without a B in column1 is encountered.

2.16.2 Input listings

Following the program control card and subsequent reduction cards, the retained system is defined and two listings
are produced. The first listing defines the retained network. Each bus name will be preceded with one or two of the
following characters: Blank Retained bus is internal and unchanged. E Retained bus is an envelope node and will
receive distributed injections and equivalent branches. X Retained bus is also an envelope node. However, everyone
of the adjacent nodes is eliminated. This is acceptable but may not be intentional and is intended as an informative
diagnostic. * Retained bus is selected by the optimal feature. P Retained bus is a generator. The second listing defines
all eliminated nodes.

2.17 Voltage Limits and Starting Voltages

The following table allows you to find global and starting voltages for a bus given the base kV and zone. These values
are hard-coded in the program and cannot be altered by the user.

460 Chapter 2. Contents



Interactive Power Flow

Table 2.17.1: Global Voltage Limits and Starting Voltages
Base kV Range

Zone
Restrictions

Global V Limits Starting V

From To V_min (p.u.) V_max
(p.u.)

Gen Buses
(40%)

Load Buses
(20%)

0.1 6.5 0.950 1.052 1.011 1.032
6.6 6.6 M1 0.950 1.065 1.019 1.042
6.6 49.9 0.950 1.052 1.011 1.032
50.0 50.0 16 1.100 1.200 1.160 1.180
50.0 59.9 0.950 1.052 1.011 1.032
60.0 60.0 17 0.950 1.100 1.040 1.070
60.0 62.9 0.950 1.052 1.011 1.032
63.0 63.0 20 0.930 1.080 1.020 1.050
63.0 99.9 0.950 1.052 1.011 1.032
100.0 100.0 16 M5 1.100 1.200 1.160 1.180
100.0 100.0 M4 0.950 1.070 1.022 1.046
100.0 114.9 0.950 1.052 1.011 1.032
115.0 115.0 M4 0.950 1.070 1.022 1.046
115.0 131.9 0.950 1.052 1.011 1.032
132.0 161.0 17 20 0.950 1.090 1.034 1.062
132.0 199.9 0.950 1.052 1.011 1.032
200.0 200.0 16 1.100 1.200 1.160 1.180
200.0 229.9 0.950 1.052 1.011 1.032
230.0 230.0 17 20 0.950 1.070 1.022 1.046
230.0 499.9 0.950 1.052 1.011 1.032
500.0 500.0 1.000 1.100 1.060 1.080
500.1 1099.9 1 0.950 1.052 1.011 1.032
1100.0 1100.0 1 1.000 1.100 1.060 1.080
1100.1 9999.9 1 0.950 1.052 1.011 1.032

2.17.1 Notes

1. Twenty percent (20%) and forty percent (40%) starting voltages are the percentages from 𝑉𝑚𝑎𝑥 to
𝑉𝑚𝑖𝑛:

𝑉𝑠𝑡𝑎𝑟𝑡 = 𝑉𝑚𝑎𝑥 * (1−%𝑝𝑐𝑡) + 𝑉𝑚𝑖𝑛 *%𝑝𝑐𝑡

“0%” starts at 𝑉𝑚𝑎𝑥; “100%” starts at 𝑉𝑚𝑖𝑛.

Ideal starting percentages would be a value which lies closest to the final voltages. For peak load cases, a
generator percentage of 30% is better; for light loads, 50% is better. The current 40% is a trade-off.

2. Zone restrictions mean that base kV’s are also subject to zones. If the zone restriction list has non-
blank entities, only base kV’s within the range and zone list zones apply. Conversely, if the zone
restriction list is blank, then there are no zone restrictions: all base kV’s within the range apply.

3. To find global and starting voltages for a bus with Base XXX and Zone ZZ, proceed as follows:

a. Find the encompassing base kV:

From_base <= XXX <= To_base

There will be one or more such ranges. Zone restrictions may qualify the base range.

2.17. Voltage Limits and Starting Voltages 461



Interactive Power Flow

b. If zone restrictions apply, check whether zone ZZ qualifies. If true, then the per-
tinent entity has been located.

If false, proceed to the next encompassing base kV and repeat step b. All encompass-
ing base ranges terminate with an inclusive blank zone list, which ultimately defaults
to “no restrictions”.

2.18 Developer Notes

This section contains notes for developers working with, enhancing, or debugging the IPF codebase.

2.18.1 Debugging

You can list names of functions or subroutines to debug in a DBGIN file in .fil passed to tsp. Debug output is printed to file
defined by DBGOUT. For example, the following routines can be listed: CNTRL, CNTRLA, FFREAD, INITL1, INITL4,
INPUT1, INT3FA, LSREAD, MATMOD, NAMBAS, NOUT1, NOUT2, RVREAD, SOLN, SWINGM, TAPEWK,
WRTHIS. These Fortran subroutines will have their debug enabled.

2.18.2 bpf Flowchart

Below is a high level flowchart of the batch power flow process.

2.18.3 tsp Flowchart

Below is a high level flowchart of the transient stability program.

2.18.4 Variables

Reading IPF code can be challenging. Fortran 77 was the programming language of the 70s and 80s. Today there are
small percentage of developers that know Fortran and even fewer that have experience writing significant amounts of it.
Though it is important to note that the language is still used in several well known projects such as the Linear Algebra
PACKage (LAPACK) .

Fortran developers must use very concise variable and function/subroutine names to make sure lines fit in the 80
character limit and original limitations on 8 character file names. Additionally, IPF code base makes heavy use of
common blocks to pass data between functions (these are basically like blocks of data since Fortran has no concept of
an object or even a struct as in C) as well as goto statements. This can make any given piece of code overwhelming to
a newcomer. For example, you might encounter something like this and feel completely lost:

kbrknt = mptr / 2
next1 = mptr + 1
next2 = mptr + 1
last1 = nsize
last2 = nsize
do k = next1, last1

kolum1(k) = 0
kordr1(k) = k+1

enddo
kordr1(last1) = 0

(continues on next page)

462 Chapter 2. Contents

http://performance.netlib.org/lapack/
http://performance.netlib.org/lapack/


Interactive Power Flow

Fig. 2.18.1: IPF bpf Flowchart
2.18. Developer Notes 463



Interactive Power Flow

Fig. 2.18.2: IPF bpf Flowchart
464 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

do k = 1, ntot
jorder(k) = kownt(2,k)
loc2(k) = loc1(k)

enddo
do k = 1, nsize

kordr2(k) = kordr1(k)
kolum2(k) = kolum1(k)

enddo

The table below contains a list of more descriptive names for variables. This can be used as a reference when getting
started.

Variable Description
datot Delta area real power total. Total area real power mismatch for power flow
dptot Delta real power total. Total real power mismatch for power flow iteration
dqtot Delta reactive power total. Total reactive power mismatch for power flow iteration
dttot Delta transformer MVAR. Total transformer apparent power mismatch for power flow iteration
icount Count of solution truncation adjustments
ikecl Jacobian matrix storage size
ittot Power flow iteration counter
kownt Unsolved buses count
kowntb Unsolved auto transformers
kowntc Unsolved areas
lppwr Iteration for solving machine equations
eyr Bus per unit voltage real component. “A” in “A + jB”
eyi Bus per unit voltage imaginary component. “B” in “A + jB”
isg Number of synchronous generators
idsw Discontinuity state

2.18.5 Command Subroutines

This section has a information about which Fortran subroutines to take a look at if you’re trying to debug a certain PFC
or PCL command.

/INITIALIZE

processed by p_pfinit_

/NETWORK_DATA, FILE = <filename>

processed by p_gtnetdat_

/OLD_BASE, FILE = <* | filename> [, CASE = <casename>]
[, REBUILD = < on | off> ]

processed by cmd_parse.c
p_gtbase.f
ctlpow.f

/CHANGES, FILE = <* | filename>

(continues on next page)

2.18. Developer Notes 465



Interactive Power Flow

(continued from previous page)

processed by cmd_parse.c
p_change.f
ctlpow.f

/SOLUTION
> BASE_SOLUTION
> DEBUG, BUS = ON,(page 3-51 to 3-56)

processed by cmd_parse.c
p_solton.f
ctlpow.f

/GET_DATA, TYPE = INPUT
A <areaname> to be added 22 July by wlp
I <area1 area2> to be added 22 July by wlp
B <busname, etc> returns all data associatated with bus
+ <busname, etc> returns all data if id fields have wild cards

(type - column 2, owner, columns 3-5, and code-year
columns 20-21)

X <busname, etc>
L <bus1 bus2, etc> returns all paralles if id is wild card (*)

returns all sections if section is 0
T <bus1 bus2, etc>
R <bus1 bus2, etc>
E <bus1 bus2, etc>

processed by cmd_parse.c
p_gtdata.f
gtinput.f

/GET_DATA, TYPE = BUS_VOLTAGES

processed by cmd_parse.c
p_gtdata.f
bus_voltages.f

/GET_DATA, TYPE = BUS_LIST [ FROM BUS_DATA ]
WHERE AREAS = <area1>, <area2>, etc AND

ZONES = <zone1>, <zone2>, etc AND
OWNERS = <own1>, <own2>, etc AND
BASEKV = base1

< base ( example < 115.0 means all base
kv's less than or equal to 115.0)

> base ( example > 115.0 means all base
kv's greater than or equal to 115.0)

base1 < base2 (all bases between base1 and
base 2)

base2 > base1 (same as above)
TYPE = B , BE, BS, BC, BD ,BV ,BQ ,BG ,BO ,BT ,BX ,

BM ,L ,LD ,LM , ,E ,T ,TP ,R
BUS = "<busname>" (quotes are necesary)
AFTER_BUS = "<busname>" ( to do 22 July by wlp)

(continues on next page)

466 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

ALL
LOADING = (<min> <max>)

processed by cmd_parse.c
p_gtdata.f
bus_list.f
gtfltr.f

/GET_DATA, TYPE = A_DATA

processed by cmd_parse.c
p_gtdata.f
a_data.f

/GET_DATA, TYPE = I_DATA

processed by cmd_parse.c
p_gtdata.f
i_data.f

/GET_DATA, TYPE = BSEKV_LIST

processed by cmd_parse.c
p_gtdata.f
bsekvlst.f

/GET_DATA, TYPE = AREA_LIST

processed by cmd_parse.c
p_gtdata.f
area_list.f

/GET_DATA, TYPE = OWNER_LIST

processed by cmd_parse.c
p_gtdata.f
owner_list.f

/GET_DATA, TYPE = BUS_EXISTS, BUS = "bus_name"

processed by cmd_parse.c
p_gtdata.f
ex_bus.f

return status: status = 0 : bus does not exist
1 : bus exists

/GET_DATA, TYPE = FILE_EXISTS, FILE = <file_name>

processed by cmd_parse.c
p_gtdata.f
ex_file.f

return status: status = 0 : file does not exist

(continues on next page)

2.18. Developer Notes 467



Interactive Power Flow

(continued from previous page)

1 : file exists
/GET_DATA, TYPE = CONNECTION
B <busname, etc> returns all connection data associatated with bus

processed by cmd_parse.c
p_gtdata.f
ex_file.f

return status: status = 0 : file does not exist
1 : file exists

/GET_DATA, TYPE = ZONE_LIST

processed by cmd_parse.c
p_gtdata.f
zone_list.f

/GET_DATA, TYPE = OUTAGES

processed by cmd_parse.c
p_gtdata.f
gtoutage.f

/GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION
UNITS = < ENGLISH | METRIC >,
DISTANCE = < miles | km >
BASEKV = <basekv>,
BASEMVA = <basemva>,
FREQUENCY = <freq>

processed by cmd_parse.c
p_gtdata.f
p_lic.f
linimp.f

/GET_DATA, TYPE = output

processed by cmd_parse.c
p_gtdata.f
gtoutput.f

/GET_DATA, TYPE = INITIALIZE_DEF

processed by cmd_parse.c
p_gtdata.f
p_initdef.f

/GET_DATA, TYPE = LOAD_DEFINE
> DEFINE ...

processed by cmd_parse.c
p_gtdata.f
p_loaddef.f

(continues on next page)

468 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

/GET_DATA, TYPE = SUB_DEFINE, SOURCE = BASE
ALTERNATE_BASE

processed by cmd_parse.c
p_gtdata.f
p_subdef.f

/GET_DATA, TYPE = LOAD_AREA

processed by cmd_parse.c
p_gtdata.f
p_ldardata.f

return status: status = 0 : success
1 : errors

/GET_DATA, TYPE = AREA_DATA
A <areaname>

processed by cmd_parse.c
p_gtdata.f
gtardata

return status: status = 0 : success
1 : errors

/REPORTS, SELECT BUS_BR_INPUT [ FROM BUS_DATA ]
[ OUTPUT = <filename> ]
WHERE (repeat filter from BUS_LIST)

processed by cmd_parse.c
p_report.f
busbrinrpt.f
gtfltr.f

/REPORTS, SELECT BUS_BR_OUTPUT [ FROM BUS_DATA ]
[ OUTPUT = <filename> ]
WHERE (repeat filter from BUS_LIST)

processed by cmd_parse.c
p_report.f
busbrotrpt.f
gtfltr.f

/REPORTS, SELECT OVERLOADED_LINES [ FROM BUS_DATA ]
[ OUTPUT = <filename> ]
WHERE (repeat filter from BUS_LIST)

processed by cmd_parse.c
p_report.f
ovldlnsrpt.f
gtfltr.f

(continues on next page)

2.18. Developer Notes 469



Interactive Power Flow

(continued from previous page)

/REPORTS, SELECT OVERLOADED_TXS [ FROM BUS_DATA ]
[ OUTPUT = <filename> ]
WHERE (repeat filter from BUS_LIST)

processed by cmd_parse.c
p_report.f
ovldtxsrpt.f
gtfltr.f

/REPORTS, SELECT BUS_UVOV [ FROM BUS_DATA ]
[ OUTPUT = <filename> ]
WHERE (repeat filter from BUS_LIST)

processed by cmd_parse.c
p_report.f
busuvovrpt.f
gtfltr.f

/REPORTS, SELECT
(GUI-customized reports, but not completed!)

processed by cmd_parse.c
p_report.f
outputrpt.f
gtfltr.f

/NEW_BASE, FILE = <filename>, CASE = <casename>
processed by cmd_parse.c

p_newbse.f
ctlpow.f

/QUIT

processed by p_pfexit_

/EXIT

processed by p_pfexit_

/CFLOW_GUI

processed by p_cflow_gui

/INITDEF

processed by p_initdef_

/LOADDEF

processed by p_loaddef_

/SUBDEF

(continues on next page)

470 Chapter 2. Contents



Interactive Power Flow

(continued from previous page)

processed by p_subdef_

2.18.6 WSCC Specifications

These functional specifications are here for more historical reasons than present day usefulness but they are from Wester
Systems Coordinating Council Load Flow and Stability Computer Programs department. They were used during intial
development of IPS.

General, Load Flow, & Stability

A. WSCC will consider any deviations and alternates of these specifications, provided the details of such deviations
and alternates are explained by the supplier.

B. Load Flow and Stability programs shall be compatible. Load flow shall accept card input or tape input from
previous cases. Stability program shall accept load flow output and system data directly from load flow history
tape of any case. Load flow and stability shall also run “back-to-back” if desired, that is, stability program run
as a continuation of load flow without operator intervention to intiate stability run.

C. Program shall be written ina standard Fortran language for ease of modification except for relocatable Fortran
subroutines.

D. Programs shall be completely documented including full explanation of theory and equations upon which cal-
culations are based as well as the Fortran listings. Complete users manual and program documentation shall be
supplied with delivery of programs. A glossary of terms shall be included in the documentation.

E. Programs shall be written for computer acceptable to the Coucil.

F. Reduced computer storage capacity shall result in reduced prgoram limits rather than elimination of program
features.

G. Program features shall not be at the expense of excessive input manipulation or machine time.

H. Diagnostics shall be provided in program operation to reveal cause of program stoppage or failure to converge.
Included in diagnostic shall be maximum real and quadrature components of power and voltage change and
names of buses on which they occur. Bus mismatch shall be available as diagnostic at user’s option. Diagnostics
shall be available at each iteration at user’s option.

Load Flow Program

A. System Limits

1. 2000 buses

2. 3000 branches, 1000 of which may be transformers with fixed or LTC taps.

3. 50 phase shifters

4. 60 interchange control areas.

5. Voltage at 400 buses controlled remotely by generation or transformer LTC.

6. 90 loss accumulation areas other than interchange areas.

7. 10 two-terminal and 5 three-terminal DC lines.

B. Buses

2.18. Developer Notes 471



Interactive Power Flow

1. Machines, loads, shunt capacitors, and shunt reactors shall all be representable separately
at each bus.

2. Loads shall be representable as scheduled mw and mvar.

3. Shunt admittances shall be representable in per-unit as follows:

(a) Fixed admittance

(b) Switched capacitor in steps with on and off voltages

(c) Switched reactor in steps with on and off voltages

4. Machines shall be represetable as follows:

(a) Scheduled voltage magnitude and angle (swing).

(b) Scheduled mw and voltage magnitude, with or without mvar limits. In event mvar limit is
reached, voltage schedule is no longer held.

(c) Scheduled mw and mvar, with or without voltage limits. In event voltage limit is reached,
mvar schedule is no longer held.

(d) Scheduled mw and variable mvar to hold voltage on remote bus. Provision shall be made at
50 voltage controlled buses for the controlling action to be shared in scheduled proportion
among the reactive outputs of up to 5 remote machines.

3. Buses shall be identified by name rather than number. Bus name shall include bus voltage
base.

2.18.7 Additional Resources

Below are some great resources if you’re looking to learn more about power flow, transient stability, and other subjects
related to this project.

• Kundur, Prabha. Power System Stability and Control. McGraw-Hill, Inc. 1994

• http://home.engineering.iastate.edu/~jdm/ee553/Tinney1.pdf

472 Chapter 2. Contents

http://home.engineering.iastate.edu/~jdm/ee553/Tinney1.pdf


INDEX

C
cf_debug (C++ member), 409
CFLOW_IPC_BUFF_SIZE (C macro), 389

E
err_buf (C++ member), 409

I
input_data (C++ union), 348
input_data::ACbus (C++ member), 348
input_data::area (C++ member), 349
input_data::branch (C++ member), 348
input_data::cbus (C++ member), 349
input_data::cmnt (C++ member), 349
input_data::DCbus (C++ member), 348
input_data::E (C++ member), 348
input_data::itie (C++ member), 349
input_data::L (C++ member), 348
input_data::LD (C++ member), 348
input_data::LM (C++ member), 348
input_data::qcurve (C++ member), 349
input_data::R (C++ member), 349
input_data::RM (C++ member), 349
input_data::RN (C++ member), 349
input_data::RP (C++ member), 349
input_data::RQ (C++ member), 349
input_data::RV (C++ member), 349
input_data::RZ (C++ member), 349
input_data::T (C++ member), 349
input_data::TP (C++ member), 349
input_data::xdata (C++ member), 349

P
pf_AC_bus (C++ struct), 350
pf_AC_bus::dummy1 (C++ member), 350
pf_AC_bus::dummy2 (C++ member), 351
pf_AC_bus::kv (C++ member), 350
pf_AC_bus::name (C++ member), 350
pf_AC_bus::owner (C++ member), 350
pf_AC_bus::pct_vars (C++ member), 351
pf_AC_bus::Pgen (C++ member), 350
pf_AC_bus::Pload (C++ member), 350

pf_AC_bus::Pmax (C++ member), 350
pf_AC_bus::Pshunt (C++ member), 350
pf_AC_bus::Qload (C++ member), 350
pf_AC_bus::Qmin (C++ member), 351
pf_AC_bus::Qsch_Qmax (C++ member), 350
pf_AC_bus::Qshunt (C++ member), 350
pf_AC_bus::rmt_kv (C++ member), 351
pf_AC_bus::rmt_name (C++ member), 351
pf_AC_bus::type (C++ member), 350
pf_AC_bus::Vhold_Vmax (C++ member), 351
pf_AC_bus::Vmin_Vdeg (C++ member), 351
pf_AC_bus::zone (C++ member), 350
pf_area (C++ struct), 351
pf_area::max_Vpu (C++ member), 352
pf_area::min_Vpu (C++ member), 352
pf_area::name (C++ member), 351
pf_area::sbus_kv (C++ member), 351
pf_area::sbus_name (C++ member), 351
pf_area::sched_export (C++ member), 351
pf_area::type (C++ member), 351
pf_area::zone0 (C++ member), 352
pf_area::zone1 (C++ member), 352
pf_area::zone2 (C++ member), 352
pf_area::zone3 (C++ member), 352
pf_area::zone4 (C++ member), 352
pf_area::zone5 (C++ member), 352
pf_area::zone6 (C++ member), 352
pf_area::zone7 (C++ member), 352
pf_area::zone8 (C++ member), 352
pf_area::zone9 (C++ member), 352
pf_area_of_zone (C++ function), 399
pf_area_soln (C++ struct), 352
pf_area_soln::Pexport (C++ member), 353
pf_area_soln::Pgen (C++ member), 353
pf_area_soln::Pload (C++ member), 353
pf_area_soln::Ploss (C++ member), 353
pf_area_soln::type (C++ member), 353
pf_branch (C++ struct), 353
pf_branch::alpha_N_deg (C++ member), 354
pf_branch::b (C++ member), 354
pf_branch::bottleneck_rating (C++ member), 355
pf_branch::bus1_kv (C++ member), 353

473



Interactive Power Flow

pf_branch::bus1_name (C++ member), 353
pf_branch::bus2_kv (C++ member), 353
pf_branch::bus2_name (C++ member), 353
pf_branch::ckt_id (C++ member), 354
pf_branch::date_in (C++ member), 354
pf_branch::date_out (C++ member), 355
pf_branch::descrip (C++ member), 354
pf_branch::emergency_rating (C++ member), 355
pf_branch::g (C++ member), 354
pf_branch::gamma_0_deg (C++ member), 354
pf_branch::meter (C++ member), 353
pf_branch::num_ckts (C++ member), 354
pf_branch::owner (C++ member), 353
pf_branch::r (C++ member), 354
pf_branch::section (C++ member), 354
pf_branch::tap1 (C++ member), 354
pf_branch::tap2 (C++ member), 354
pf_branch::thermal_rating (C++ member), 355
pf_branch::total_rating (C++ member), 354
pf_branch::type (C++ member), 353
pf_branch::x (C++ member), 354
pf_branch_soln (C++ struct), 355
pf_branch_soln::crit_line_load_amps (C++

member), 356
pf_branch_soln::crit_line_load_term (C++

member), 356
pf_branch_soln::crit_line_rat_amps (C++ mem-

ber), 356
pf_branch_soln::crit_line_rat_code (C++ mem-

ber), 356
pf_branch_soln::crit_xfmr_load_mva (C++ mem-

ber), 356
pf_branch_soln::crit_xfmr_load_term (C++

member), 356
pf_branch_soln::crit_xfmr_rat_code (C++ mem-

ber), 356
pf_branch_soln::crit_xfmr_rat_mva (C++ mem-

ber), 356
pf_branch_soln::num_ckts (C++ member), 355
pf_branch_soln::Pin (C++ member), 355
pf_branch_soln::Ploss (C++ member), 355
pf_branch_soln::Pout (C++ member), 355
pf_branch_soln::Qin (C++ member), 355
pf_branch_soln::Qloss (C++ member), 355
pf_branch_soln::Qout (C++ member), 355
pf_branch_soln::tap1 (C++ member), 356
pf_branch_soln::tap2 (C++ member), 356
pf_branch_soln::tot_line_load_amps (C++ mem-

ber), 356
pf_branch_soln::tot_line_load_pct (C++ mem-

ber), 356
pf_branch_soln::tot_xfmr_load_mva (C++ mem-

ber), 356

pf_branch_soln::tot_xfmr_load_pct (C++ mem-
ber), 356

pf_branch_soln::type (C++ member), 355
pf_bus_AC_soln (C++ struct), 356
pf_bus_AC_soln::Bshunt_sch (C++ member), 357
pf_bus_AC_soln::Bshunt_sch_cap (C++ member),

357
pf_bus_AC_soln::Bshunt_sch_rx (C++ member),

357
pf_bus_AC_soln::Bshunt_used (C++ member), 357
pf_bus_AC_soln::Bshunt_used_cap (C++ member),

357
pf_bus_AC_soln::Bshunt_used_rx (C++ member),

357
pf_bus_AC_soln::Pgen (C++ member), 357
pf_bus_AC_soln::Pload (C++ member), 357
pf_bus_AC_soln::Qgen (C++ member), 357
pf_bus_AC_soln::Qload (C++ member), 357
pf_bus_AC_soln::Qunsch (C++ member), 357
pf_bus_AC_soln::type (C++ member), 357
pf_bus_AC_soln::Vdeg (C++ member), 357
pf_bus_AC_soln::Vmag (C++ member), 357
pf_bus_DC_soln (C++ struct), 358
pf_bus_DC_soln::converter_deg (C++ member),

358
pf_bus_DC_soln::dummy1 (C++ member), 358
pf_bus_DC_soln::dummy2 (C++ member), 358
pf_bus_DC_soln::dummy3 (C++ member), 358
pf_bus_DC_soln::dummy4 (C++ member), 358
pf_bus_DC_soln::dummy5 (C++ member), 358
pf_bus_DC_soln::dummy6 (C++ member), 358
pf_bus_DC_soln::dummy7 (C++ member), 359
pf_bus_DC_soln::P_DC (C++ member), 358
pf_bus_DC_soln::P_valve_losses (C++ member),

358
pf_bus_DC_soln::Q_DC (C++ member), 358
pf_bus_DC_soln::Q_valve_losses (C++ member),

358
pf_bus_DC_soln::type (C++ member), 358
pf_bus_DC_soln::V_DC (C++ member), 358
pf_bus_exists (C++ function), 401
pf_case_info (C++ function), 399
pf_case_stats (C++ struct), 359
pf_case_stats::base_mva (C++ member), 359
pf_case_stats::case_soln_status (C++ member),

360
pf_case_stats::num_adjustable_buses (C++

member), 360
pf_case_stats::num_AGC_buses (C++ member), 359
pf_case_stats::num_area_slack_buses (C++

member), 359
pf_case_stats::num_areas (C++ member), 359
pf_case_stats::num_branches (C++ member), 360
pf_case_stats::num_buses (C++ member), 359

474 Index



Interactive Power Flow

pf_case_stats::num_BX_buses (C++ member), 359
pf_case_stats::num_circuits (C++ member), 360
pf_case_stats::num_DC_buses (C++ member), 359
pf_case_stats::num_DC_lines (C++ member), 360
pf_case_stats::num_DC_systems (C++ member),

359
pf_case_stats::num_diff_kv (C++ member), 360
pf_case_stats::num_ities (C++ member), 359
pf_case_stats::num_LTC_xfmrs (C++ member), 360
pf_case_stats::num_owners (C++ member), 359
pf_case_stats::num_pct_var_ctrl_buses (C++

member), 360
pf_case_stats::num_phase_shifters (C++ mem-

ber), 360
pf_case_stats::num_rec_types (C++ member), 360
pf_case_stats::num_zones (C++ member), 359
pf_case_stats::PF_version (C++ member), 359
pf_cbus (C++ struct), 360
pf_cbus::Bshunt (C++ member), 361
pf_cbus::code_year (C++ member), 361
pf_cbus::Gshunt (C++ member), 361
pf_cbus::kv (C++ member), 361
pf_cbus::name (C++ member), 361
pf_cbus::owner (C++ member), 361
pf_cbus::Pgen (C++ member), 361
pf_cbus::Pload (C++ member), 361
pf_cbus::Qgen_Qmax (C++ member), 361
pf_cbus::Qload (C++ member), 361
pf_cbus::Qmin (C++ member), 361
pf_cbus::type (C++ member), 361
pf_cbus_soln (C++ struct), 361
pf_cbus_soln::Bshunt (C++ member), 362
pf_cbus_soln::Gshunt (C++ member), 362
pf_cbus_soln::Pgen (C++ member), 362
pf_cbus_soln::Pload (C++ member), 362
pf_cbus_soln::Qgen (C++ member), 362
pf_cbus_soln::Qload (C++ member), 362
pf_cbus_soln::type (C++ member), 362
pf_cflow_exit (C++ function), 390
pf_cflow_inbuf (C++ member), 409
pf_cflow_init (C++ function), 390
pf_cflow_ipc (C++ function), 390
pf_cflow_outbuf (C++ member), 409
pf_cflow_socket (C++ member), 409
pf_command (C++ function), 409
pf_comments (C++ struct), 362
pf_comments::c (C++ member), 362
pf_comments::case_desc (C++ member), 362
pf_comments::case_name (C++ member), 362
pf_comments::h (C++ member), 362
pf_DC_bus (C++ struct), 362
pf_DC_bus::alpha_gamma_N_deg (C++ member), 363
pf_DC_bus::alpha_min_deg (C++ member), 363
pf_DC_bus::alpha_stop_deg (C++ member), 363

pf_DC_bus::bridge_current_rating_amps (C++
member), 363

pf_DC_bus::bridges_per_ckt (C++ member), 363
pf_DC_bus::commutating_bus_kv (C++ member),

364
pf_DC_bus::commutating_bus_name (C++ member),

364
pf_DC_bus::converter_code (C++ member), 364
pf_DC_bus::dummy1 (C++ member), 363
pf_DC_bus::dummy2 (C++ member), 364
pf_DC_bus::gamma_0_deg (C++ member), 363
pf_DC_bus::kv (C++ member), 363
pf_DC_bus::name (C++ member), 363
pf_DC_bus::owner (C++ member), 363
pf_DC_bus::P_sched (C++ member), 363
pf_DC_bus::smooth_rx_mh (C++ member), 363
pf_DC_bus::type (C++ member), 363
pf_DC_bus::V_sched (C++ member), 363
pf_DC_bus::valve_drop_per_bridge_volts (C++

member), 363
pf_DC_bus::zone (C++ member), 363
pf_del_area (C++ function), 390
pf_del_zone (C++ function), 390
pf_E (C++ struct), 364
pf_E::b1 (C++ member), 365
pf_E::b2 (C++ member), 365
pf_E::bottleneck_rating (C++ member), 366
pf_E::bus1_kv (C++ member), 364
pf_E::bus1_name (C++ member), 364
pf_E::bus2_kv (C++ member), 364
pf_E::bus2_name (C++ member), 364
pf_E::ckt_id (C++ member), 365
pf_E::date_in (C++ member), 365
pf_E::date_out (C++ member), 366
pf_E::dummy1 (C++ member), 365
pf_E::dummy2 (C++ member), 365
pf_E::dummy3 (C++ member), 365
pf_E::dummy4 (C++ member), 366
pf_E::g1 (C++ member), 365
pf_E::g2 (C++ member), 365
pf_E::meter (C++ member), 364
pf_E::num_ckts (C++ member), 365
pf_E::owner (C++ member), 364
pf_E::r (C++ member), 365
pf_E::section (C++ member), 365
pf_E::thermal_rating (C++ member), 366
pf_E::total_rating (C++ member), 365
pf_E::type (C++ member), 364
pf_E::x (C++ member), 365
pf_get_list (C++ function), 398
pf_init (C++ function), 398
pf_init_area (C++ function), 401
pf_init_branch (C++ function), 401
pf_init_bus (C++ function), 400

Index 475



Interactive Power Flow

pf_init_cbus (C++ function), 400
pf_init_itie (C++ function), 400
pf_init_qcurve (C++ function), 399
pf_init_rec (C++ function), 399
pf_itie (C++ struct), 366
pf_itie::area1_name (C++ member), 366
pf_itie::area2_name (C++ member), 366
pf_itie::sched_export (C++ member), 366
pf_itie::type (C++ member), 366
pf_itie_soln (C++ struct), 366
pf_itie_soln::input_exists (C++ member), 367
pf_itie_soln::Pcirc (C++ member), 367
pf_itie_soln::Pexport (C++ member), 367
pf_itie_soln::type (C++ member), 367
pf_L (C++ struct), 367
pf_L::b (C++ member), 368
pf_L::bottleneck_rating (C++ member), 369
pf_L::bus1_kv (C++ member), 367
pf_L::bus1_name (C++ member), 367
pf_L::bus2_kv (C++ member), 367
pf_L::bus2_name (C++ member), 367
pf_L::ckt_id (C++ member), 368
pf_L::date_in (C++ member), 368
pf_L::date_out (C++ member), 368
pf_L::descrip (C++ member), 368
pf_L::dummy1 (C++ member), 368
pf_L::dummy2 (C++ member), 368
pf_L::dummy3 (C++ member), 368
pf_L::dummy4 (C++ member), 369
pf_L::g (C++ member), 368
pf_L::meter (C++ member), 367
pf_L::miles (C++ member), 368
pf_L::num_ckts (C++ member), 368
pf_L::owner (C++ member), 367
pf_L::r (C++ member), 368
pf_L::section (C++ member), 368
pf_L::thermal_rating (C++ member), 369
pf_L::total_rating (C++ member), 368
pf_L::type (C++ member), 367
pf_L::x (C++ member), 368
pf_LD (C++ struct), 369
pf_LD::alpha_N_deg (C++ member), 370
pf_LD::bottleneck_rating (C++ member), 371
pf_LD::bus1_kv (C++ member), 369
pf_LD::bus1_name (C++ member), 369
pf_LD::bus2_kv (C++ member), 369
pf_LD::bus2_name (C++ member), 369
pf_LD::C_uf (C++ member), 370
pf_LD::dummy1 (C++ member), 370
pf_LD::dummy2 (C++ member), 370
pf_LD::dummy3 (C++ member), 370
pf_LD::dummy4 (C++ member), 370
pf_LD::dummy5 (C++ member), 370
pf_LD::dummy6 (C++ member), 371

pf_LD::gamma_0_deg (C++ member), 370
pf_LD::I_or_R_control (C++ member), 369
pf_LD::L_mh (C++ member), 370
pf_LD::meter (C++ member), 369
pf_LD::miles (C++ member), 370
pf_LD::owner (C++ member), 369
pf_LD::P_sched (C++ member), 370
pf_LD::R (C++ member), 370
pf_LD::thermal_rating (C++ member), 370
pf_LD::total_rating (C++ member), 370
pf_LD::type (C++ member), 369
pf_LD::V_sched (C++ member), 370
pf_list_type (C++ enum), 389
pf_list_type::AREA_LIST (C++ enumerator), 389
pf_list_type::BUS_LIST (C++ enumerator), 389
pf_list_type::KV_LIST (C++ enumerator), 389
pf_list_type::OWNER_LIST (C++ enumerator), 389
pf_list_type::REC_TYPE_LIST (C++ enumerator),

389
pf_list_type::ZONE_LIST (C++ enumerator), 389
pf_LM (C++ struct), 371
pf_LM::bottleneck_rating (C++ member), 372
pf_LM::bus1_kv (C++ member), 371
pf_LM::bus1_name (C++ member), 371
pf_LM::bus2_kv (C++ member), 371
pf_LM::bus2_name (C++ member), 371
pf_LM::C_uf (C++ member), 372
pf_LM::date_in (C++ member), 372
pf_LM::date_out (C++ member), 372
pf_LM::dummy1 (C++ member), 371
pf_LM::dummy2 (C++ member), 371
pf_LM::dummy3 (C++ member), 372
pf_LM::dummy4 (C++ member), 372
pf_LM::dummy5 (C++ member), 372
pf_LM::dummy6 (C++ member), 372
pf_LM::dummy7 (C++ member), 372
pf_LM::dummy8 (C++ member), 372
pf_LM::dummy9 (C++ member), 373
pf_LM::L_mh (C++ member), 372
pf_LM::meter (C++ member), 371
pf_LM::miles (C++ member), 372
pf_LM::owner (C++ member), 371
pf_LM::R (C++ member), 372
pf_LM::thermal_rating (C++ member), 372
pf_LM::total_rating (C++ member), 372
pf_LM::type (C++ member), 371
pf_load_changes (C++ function), 392
pf_load_netdata (C++ function), 392
pf_load_oldbase (C++ function), 392
pf_load_refbase (C++ function), 408
pf_plot (C++ function), 407
pf_put_inrec (C++ function), 392
pf_qcurve (C++ struct), 373
pf_qcurve::active (C++ member), 373

476 Index



Interactive Power Flow

pf_qcurve::bus_kv (C++ member), 373
pf_qcurve::bus_name (C++ member), 373
pf_qcurve::Pgen0 (C++ member), 373
pf_qcurve::Pgen1 (C++ member), 373
pf_qcurve::Pgen2 (C++ member), 373
pf_qcurve::Pgen3 (C++ member), 373
pf_qcurve::Pgen4 (C++ member), 373
pf_qcurve::Pgen5 (C++ member), 373
pf_qcurve::Pgen6 (C++ member), 373
pf_qcurve::Pgen7 (C++ member), 374
pf_qcurve::Pgen8 (C++ member), 374
pf_qcurve::Pgen9 (C++ member), 374
pf_qcurve::PU_code (C++ member), 373
pf_qcurve::type (C++ member), 373
pf_qcurve_soln (C++ struct), 374
pf_qcurve_soln::Pgen (C++ member), 374
pf_qcurve_soln::Qgen (C++ member), 374
pf_qcurve_soln::type (C++ member), 374
pf_R (C++ struct), 374
pf_R::bus1_kv (C++ member), 374
pf_R::bus1_name (C++ member), 374
pf_R::bus2_kv (C++ member), 375
pf_R::bus2_name (C++ member), 375
pf_R::date_in (C++ member), 376
pf_R::date_out (C++ member), 376
pf_R::dummy1 (C++ member), 375
pf_R::dummy2 (C++ member), 375
pf_R::dummy3 (C++ member), 375
pf_R::dummy4 (C++ member), 375
pf_R::dummy5 (C++ member), 375
pf_R::dummy6 (C++ member), 375
pf_R::dummy7 (C++ member), 375
pf_R::dummy8 (C++ member), 375
pf_R::dummy9 (C++ member), 375
pf_R::max_tap (C++ member), 375
pf_R::min_tap (C++ member), 375
pf_R::num_taps (C++ member), 375
pf_R::owner (C++ member), 374
pf_R::Qmax (C++ member), 376
pf_R::Qmin (C++ member), 376
pf_R::rmt_bus_kv (C++ member), 376
pf_R::rmt_bus_name (C++ member), 376
pf_R::type (C++ member), 374
pf_R::var_tap_side (C++ member), 374
pf_rec (C++ struct), 376
pf_rec::i (C++ member), 376
pf_rec::s (C++ member), 376
pf_rec_a2b (C++ function), 397
pf_rec_area (C++ function), 393
pf_rec_b2a (C++ function), 397
pf_rec_branch (C++ function), 393
pf_rec_bus (C++ function), 394
pf_rec_cbus (C++ function), 395
pf_rec_comments (C++ function), 395

pf_rec_itie (C++ function), 395
pf_rec_qcurve (C++ function), 396
pf_rec_xdata (C++ function), 396
pf_rename_area (C++ function), 391
pf_rename_bus (C++ function), 391
pf_rename_zone (C++ function), 391
pf_RM (C++ struct), 376
pf_RM::bus1_kv (C++ member), 377
pf_RM::bus1_name (C++ member), 377
pf_RM::bus2_kv (C++ member), 377
pf_RM::bus2_name (C++ member), 377
pf_RM::date_in (C++ member), 378
pf_RM::date_out (C++ member), 378
pf_RM::dummy1 (C++ member), 377
pf_RM::dummy2 (C++ member), 377
pf_RM::dummy3 (C++ member), 377
pf_RM::dummy4 (C++ member), 377
pf_RM::dummy5 (C++ member), 377
pf_RM::dummy6 (C++ member), 377
pf_RM::dummy7 (C++ member), 378
pf_RM::dummy8 (C++ member), 378
pf_RM::dummy9 (C++ member), 378
pf_RM::max_phase_shift_deg (C++ member), 378
pf_RM::min_phase_shift_deg (C++ member), 378
pf_RM::num_taps (C++ member), 377
pf_RM::owner (C++ member), 377
pf_RM::Pmax (C++ member), 378
pf_RM::Pmin (C++ member), 378
pf_RM::rmt_bus_kv (C++ member), 378
pf_RM::rmt_bus_name (C++ member), 378
pf_RM::type (C++ member), 377
pf_RM::var_tap_side (C++ member), 377
pf_RN (C++ type), 389
pf_RP (C++ type), 389
pf_RQ (C++ type), 389
pf_RV (C++ type), 389
pf_RZ (C++ struct), 378
pf_RZ::Bis_max (C++ member), 380
pf_RZ::Bis_min (C++ member), 380
pf_RZ::bus1_kv (C++ member), 379
pf_RZ::bus1_name (C++ member), 379
pf_RZ::bus2_kv (C++ member), 379
pf_RZ::bus2_name (C++ member), 379
pf_RZ::ckt_id (C++ member), 379
pf_RZ::dummy1 (C++ member), 380
pf_RZ::dummy2 (C++ member), 380
pf_RZ::dummy3 (C++ member), 380
pf_RZ::dummy4 (C++ member), 380
pf_RZ::dummy5 (C++ member), 380
pf_RZ::dummy6 (C++ member), 380
pf_RZ::dummy7 (C++ member), 380
pf_RZ::dummy8 (C++ member), 380
pf_RZ::I_rate (C++ member), 379
pf_RZ::owner (C++ member), 379

Index 477



Interactive Power Flow

pf_RZ::Pc_max (C++ member), 379
pf_RZ::Pc_min (C++ member), 379
pf_RZ::rani_type (C++ member), 379
pf_RZ::section (C++ member), 379
pf_RZ::type (C++ member), 379
pf_RZ::var_tap_side (C++ member), 379
pf_RZ::Xij_max (C++ member), 380
pf_RZ::Xij_min (C++ member), 380
pf_save_changes (C++ function), 397
pf_save_netdata (C++ function), 397
pf_save_newbase (C++ function), 398
pf_save_wscc_stab_data (C++ function), 398
pf_select_base (C++ function), 408
pf_solution (C++ function), 398
pf_solve_area (C++ function), 408
pf_T (C++ struct), 380
pf_T::b (C++ member), 382
pf_T::bottleneck_rating (C++ member), 382
pf_T::bus1_kv (C++ member), 381
pf_T::bus1_name (C++ member), 381
pf_T::bus2_kv (C++ member), 381
pf_T::bus2_name (C++ member), 381
pf_T::ckt_id (C++ member), 381
pf_T::date_in (C++ member), 382
pf_T::date_out (C++ member), 382
pf_T::dummy1 (C++ member), 382
pf_T::dummy2 (C++ member), 382
pf_T::dummy3 (C++ member), 382
pf_T::emergency_rating (C++ member), 382
pf_T::g (C++ member), 381
pf_T::meter (C++ member), 381
pf_T::num_ckts (C++ member), 381
pf_T::owner (C++ member), 381
pf_T::r (C++ member), 381
pf_T::section (C++ member), 381
pf_T::tap1 (C++ member), 382
pf_T::tap2 (C++ member), 382
pf_T::thermal_rating (C++ member), 382
pf_T::total_rating (C++ member), 381
pf_T::type (C++ member), 381
pf_T::x (C++ member), 381
pf_TP (C++ struct), 382
pf_TP::b (C++ member), 384
pf_TP::bottleneck_rating (C++ member), 384
pf_TP::bus1_kv (C++ member), 383
pf_TP::bus1_name (C++ member), 383
pf_TP::bus2_kv (C++ member), 383
pf_TP::bus2_name (C++ member), 383
pf_TP::ckt_id (C++ member), 383
pf_TP::date_in (C++ member), 384
pf_TP::date_out (C++ member), 384
pf_TP::dummy1 (C++ member), 384
pf_TP::dummy2 (C++ member), 384
pf_TP::dummy3 (C++ member), 384

pf_TP::emergency_rating (C++ member), 384
pf_TP::g (C++ member), 383
pf_TP::meter (C++ member), 383
pf_TP::num_ckts (C++ member), 383
pf_TP::owner (C++ member), 383
pf_TP::phase_shift_deg (C++ member), 384
pf_TP::r (C++ member), 383
pf_TP::section (C++ member), 383
pf_TP::tap2 (C++ member), 384
pf_TP::thermal_rating (C++ member), 384
pf_TP::total_rating (C++ member), 383
pf_TP::type (C++ member), 383
pf_TP::x (C++ member), 383
pf_user_branch (C++ function), 405
pf_user_bus (C++ function), 406
pf_user_comment (C++ function), 404
pf_user_define (C++ function), 403
pf_user_init_def (C++ function), 402
pf_user_itie (C++ function), 406
pf_user_load_def (C++ function), 402
pf_user_quantity (C++ function), 404
pf_user_report (C++ function), 403
pf_user_string (C++ function), 405
pf_user_sub_def (C++ function), 402
pf_xdata (C++ struct), 384
pf_xdata::bus_kv (C++ member), 385
pf_xdata::bus_name (C++ member), 385
pf_xdata::owner (C++ member), 385
pf_xdata::rmt_kv (C++ member), 385
pf_xdata::rmt_name (C++ member), 385
pf_xdata::seg1_delta_mva (C++ member), 385
pf_xdata::seg1_num_steps (C++ member), 385
pf_xdata::seg2_delta_mva (C++ member), 385
pf_xdata::seg2_num_steps (C++ member), 385
pf_xdata::seg3_delta_mva (C++ member), 385
pf_xdata::seg3_num_steps (C++ member), 385
pf_xdata::seg4_delta_mva (C++ member), 385
pf_xdata::seg4_num_steps (C++ member), 385
pf_xdata::seg5_delta_mva (C++ member), 385
pf_xdata::seg5_num_steps (C++ member), 385
pf_xdata::seg6_delta_mva (C++ member), 386
pf_xdata::seg6_num_steps (C++ member), 386
pf_xdata::seg7_delta_mva (C++ member), 386
pf_xdata::seg7_num_steps (C++ member), 386
pf_xdata::seg8_delta_mva (C++ member), 386
pf_xdata::seg8_num_steps (C++ member), 386
pf_xdata::type (C++ member), 385
pf_xdata_soln (C++ struct), 386
pf_xdata_soln::seg1_mvar_per_unit (C++ mem-

ber), 386
pf_xdata_soln::seg1_sch_units (C++ member),

386
pf_xdata_soln::seg1_used_units (C++ member),

386

478 Index



Interactive Power Flow

pf_xdata_soln::seg2_mvar_per_unit (C++ mem-
ber), 386

pf_xdata_soln::seg2_sch_units (C++ member),
386

pf_xdata_soln::seg2_used_units (C++ member),
386

pf_xdata_soln::seg3_mvar_per_unit (C++ mem-
ber), 387

pf_xdata_soln::seg3_sch_units (C++ member),
387

pf_xdata_soln::seg3_used_units (C++ member),
387

pf_xdata_soln::seg4_mvar_per_unit (C++ mem-
ber), 387

pf_xdata_soln::seg4_sch_units (C++ member),
387

pf_xdata_soln::seg4_used_units (C++ member),
387

pf_xdata_soln::seg5_mvar_per_unit (C++ mem-
ber), 387

pf_xdata_soln::seg5_sch_units (C++ member),
387

pf_xdata_soln::seg5_used_units (C++ member),
387

pf_xdata_soln::seg6_mvar_per_unit (C++ mem-
ber), 387

pf_xdata_soln::seg6_sch_units (C++ member),
387

pf_xdata_soln::seg6_used_units (C++ member),
387

pf_xdata_soln::seg7_mvar_per_unit (C++ mem-
ber), 387

pf_xdata_soln::seg7_sch_units (C++ member),
387

pf_xdata_soln::seg7_used_units (C++ member),
387

pf_xdata_soln::seg8_mvar_per_unit (C++ mem-
ber), 388

pf_xdata_soln::seg8_sch_units (C++ member),
388

pf_xdata_soln::seg8_used_units (C++ member),
388

pf_xdata_soln::type (C++ member), 386

R
reply_pf (C++ member), 409

S
solution_data (C++ union), 388
solution_data::ACbus (C++ member), 388
solution_data::area (C++ member), 388
solution_data::branch (C++ member), 388
solution_data::cbus (C++ member), 388
solution_data::DCbus (C++ member), 388

solution_data::itie (C++ member), 388
solution_data::qcurve (C++ member), 388
solution_data::xdata (C++ member), 388

Index 479


	Features
	Contents
	Installation
	Docker
	Compiling Manually
	Debug
	Testing


	Overview
	IPF Interaction Model
	The bpf Batch Approach
	The ipfbat Batch Approach
	The GUI Approach
	The CFLOW Approach

	Executables
	Network Data
	The BASE (.bse) File

	History
	Original License
	Original Contributors

	Application Examples
	Introduction
	Setting Up a Network Data File
	New Facilities
	Proposed New Facility
	Possible Uses of IPF

	Reconductoring
	Proposed New Facility
	Possible Uses of Powerﬂow

	Series Compsensation
	Proposed New Facility
	Possible Uses of Powerﬂow


	Record Formats
	Overview
	System Changes
	Comment
	Continuation Bus Data (+)
	Area Interchange Control (A)
	Area Output Sort (AO)
	AC Bus Data
	AC Bus Data (B-blank)
	Application
	Bus Characteristics

	AC Bus Data (BC)
	Application
	Bus Characteristics

	AC Bus Data (BE)
	Application
	Bus Characteristics

	AC Bus Data (BF)
	AC Bus Data (BG)
	Application
	Bus Characteristics

	AC Bus Data (BQ)
	Application
	Bus Characteristics

	AC Bus Data (BS)
	Application
	Bus Characteristics

	AC Bus Data (BT)
	Application
	Bus Characteristics

	AC Bus Data (BV)
	Application
	Bus Characteristics

	AC Bus Data (BX)
	Application
	Bus Characteristics

	Two-Terminal DC Bus (BD)
	Multi-Terminal DC Bus (BM)
	Delete Buses by Area (DA)
	Delete Buses by Zone (DZ)
	Equivalent Transmission Line Branch (E)
	Scheduled Area Intertie (I)
	Balanced Transmission Line Branch (L)
	Two-Terminal DC Line (LD)
	Multiterminal DC Line (LM)
	Factor Change (PO, PZ, PN, PA, PB, PC, PD)
	Reactive Capability Curves (QP, QX, QN)
	Description
	Processing

	Regulating Transformer (R, RV, RQ, RP, RN, RM)
	Series Compensated RANI Model (RZ)
	Transformer Data (T, TP)
	Switched Reactance (X)
	Zone Rename (Z)
	Area Rename (ZA)
	Bus Rename (ZB)

	Power Flow Control (PFC)
	Overview
	The bpf Control Language
	Special Characters
	Default Convention
	Microfiche Control Statement
	Level 1 PFC Commands
	Level 2 and 3 PFC Commands
	PFC Commands
	AGC
	General Description

	AI_LIST
	ANALYSIS_SELECT
	BRANCH_DATA
	BUS_SENSITIVITIES
	Selected Buses
	Repeat Sensitivities
	Example
	Sample Deck Setup

	CHANGE_BUS_TYPE
	Bus type changes
	LTC Transformer Control
	LIST
	Excluded Buses
	Line Drop Compensation
	Reactive Compensation
	Example

	CHANGE_PARAMETERS
	BX = LOCKED
	Restrictions on BX Locking
	Bus Perturbation
	Restrictions
	Load Perturbation
	Generation Perturbation
	Bus Monitored Quantities
	PLOT File
	User Analysis
	Example 1
	Example 2
	Miscellaneous Notes

	CHANGES
	COMMENT
	COMMON_MODE_ANALYSIS
	Description of Operation

	F_ANALYSIS_RPT
	Example

	F_INPUT_LIST
	F_OUTPUT_LIST
	GEN_DROP
	Area Interchange Control
	Initial Dropped Generation
	Tolerance
	Areas or Zones
	Exclude Buses
	Selected Generators To Be Dropped
	Example

	HEADER
	INCLUDE_CONTROL
	LINE_EFF
	LINE_SENSITIVITIES
	Notes
	Sample Deck Set-up

	%LOAD_DISTRIBUTION
	Constant Current and Impedance Loads
	Description of Constant Current Load Model
	Description of Distribution Factors
	Systematically Selected Buses
	Individually Selected Buses
	Example 1
	Example 2

	Limitations, Restrictions, and Assumptions

	LOAD_GE
	LOAD_GE qualiﬁers

	LOAD_PTI
	LOAD_PTI qualiﬁers

	LOSS_SENSITIVITIES
	dLossdPi
	dLossdQi
	dLossdVi

	MERGE_OLD_BASE and MERGE_NEW_BASE
	MVA_BASE
	NETWORK_DATA
	NEW_BASE
	OI_LIST
	OLD_BASE
	OUTAGE_SIMULATION
	OUTAGE_SIMULATION Qualiﬁers
	Debugging techniques

	OVERLOAD_RPT
	P_ANALYSIS_RPT
	Example

	P_INPUT_LIST
	P_OUTPUT_LIST
	REBUILD
	REDUCTION
	Reduction Qualifiers

	RPT_SORT
	SAVE_FILE
	SOLUTION
	SOLUTION Qualiﬁers
	Restrictions


	SORT_ANALYSIS
	TRACE
	TRANSFER_SENSITIVITIES
	TX_EFF
	USER_ANALYSIS
	Example
	Symbol Definitions
	>DEFINE_TYPE BRANCH_P and >DEFINE_TYPE BRANCH_Q
	>DEFINE_TYPE INTERTIE_P or DEFINE_TYPE INTERTIE_Q
	> DEFINE_TYPE INTERTIE_P_SCHEDULED
	>DEFINE_TYPE OWNER_LOSS AREA_LOSS ZONE_LOSS SYSTEM_LOSS
	>DEFINE_TYPE FUNCTION
	>DEFINE_TYPE OLDBASE
	> DEFINE_TYPE BUS_INDEX
	> DEFINE_TYPE BRANCH_INDEX
	> DEFINE_TYPE ZONE_INDEX
	> DEFINE_TYPE OWNER_INDEX
	> DEFINE_TYPE TRANSFER_INDEX
	Pagination Specifications

	PFC Examples
	Base Case Example
	Change Case Example
	Merge Case Example 1
	Merge Case Example 2
	Reduction Case Example


	Powerflow Command Language (PCL)
	Introduction
	General
	(END)
	*[EOM]
	INITIALIZE
	QUIT, EXIT
	SYSCAL

	File Opening and Saving
	NETWORK_DATA
	NEW_BASE
	OLD_BASE
	SAVE_FILE

	Processes
	CFLOW
	CHANGES
	PLOT
	SOLUTION
	GET_DATA
	GET_DATA, TYPE = A_DATA
	GET_DATA, TYPE = AREA_DATA
	GET_DATA, TYPE = AREA_LIST
	GET_DATA, TYPE = BSEKV_LIST
	GET_DATA, TYPE = BUS_EXISTS
	GET_DATA, TYPE = BUS_LIST
	GET_DATA, TYPE = BUS_VOLTAGES
	GET_DATA, TYPE = COMMENTS
	GET_DATA, TYPE = CONNECTION
	GET_DATA, TYPE = COUNT
	GET_DATA, TYPE = FILE_EXISTS
	GET_DATA, TYPE = I_DATA
	GET_DATA, TYPE = INITIALIZE_DEF
	GET_DATA, TYPE = INPUT
	GET_DATA, TYPE = LINE_IMPEDANCE_CALCULATION
	GET_DATA, TYPE = LOAD_AREA
	GET_DATA, TYPE = LOAD_DEFINE
	GET_DATA, TYPE = LOAD_REF_AREA
	GET_DATA, TYPE = LOAD_REF_BASE
	GET_DATA, TYPE = NETWORK_DATA
	GET_DATA, TYPE = OUTAGES
	GET_DATA, TYPE = OUTPUT
	GET_DATA, TYPE = OWNER_LIST
	GET_DATA, TYPE = RECORD_LIST

	PUT_DATA
	Report Generation
	REPORTS, SELECT AI_SUMMARY
	REPORTS, SELECT BUS_INPUT
	REPORTS, SELECT BUS_BR_INPUT
	REPORTS, SELECT BUS_BR_OUTPUT
	REPORTS, SELECT BUS_UVOV
	REPORTS, SELECT LINE_COMPARISON
	REPORTS, SELECT NETWORK_CHANGES
	REPORTS, SELECT NETWORK_DELETIONS
	REPORTS, SELECT OVERLOADED_LINES
	REPORTS, SELECT OVERLOADED_TXS
	REPORTS, SELECT PHASE_SHIFTER
	REPORTS, SELECT TIE_LINE_SUMMARY
	REPORTS, SELECT VOLTAGE_COMPARISON


	Command Line Tools
	bpf
	Types of Processing
	Creating a New Base Case
	Changing an Old Base Case
	Merging Subsystems
	Reducing a Network
	Simulating Outages

	ipf_reports
	ipfplot
	netdat
	ipfcut
	Cutting Methodologies
	Input Commands
	Interactive Approach

	pvcurve
	post_pvcurve
	qvcurve
	findout
	lineflow
	mimic
	ipfsrv
	ipfbat
	Overview
	Batch Mode Plotting
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5


	ipf_test
	ipfnet
	Input
	Sample Run

	ips2ipf
	IPS IPF Differences


	Transient Stability Program (tsp)
	Program Description

	X Window Graphical Interface (gui)
	Audience
	User Interface
	Keyboard Conventions
	X Window System

	A Summary of Motif Basics
	Motif Windows
	Motif Resources
	Common Windows Tasks
	To move a window
	To reduce a window to an icon
	To change an icon into its window
	To resize a window
	To enlarge a window quickly
	To pop up a window’s menu


	IPF as an X Client
	IPF X Window GUI Architecture
	History
	Working with the GUI
	Starting IPF
	Exiting IPF
	Opening Files
	Displaying a Network File

	Saving Files
	Changing the Displayed Network Size
	Editing Base Case Data
	Adding a Bus and Related Components
	Modifying a Bus
	Adding a Branch
	Modifying a Branch
	Adding, Modifying, or Deleting an Area or Intertie
	Exploring Base Case Connectivity
	Sectionalizing a Bus
	Tapping a Line

	Solving a Network Case
	Bus and Branch Editing
	Bus Editing
	Branch and Other Component Editing
	Adding New Components

	Input Data Edit Dialog Boxes
	AC Bus Input Data Boxes
	B-Blank Bus
	BC Bus
	BE Bus
	BF Bus
	BG Bus
	BQ Bus
	BS Bus
	BT Bus
	BV Bus
	BX Bus

	BD Bus
	BM Bus
	Continuation Bus
	Switched Reactance
	PQ Curve
	Sectionalization
	Line Tapping (may not be available)
	Transmission Line
	Phase Shifter
	Transformer
	Regulating Transformer
	Equivalent Network
	Menu Commands
	Alpha Search (View)
	Area/Interchange (Edit)
	Auto CFLOW (Process)
	Bending Points (View)
	Color Scheme (View)
	Command Dialog (View)
	Error Messages (Help)
	Exit (File)
	General (Help)
	Network Data Edit (Edit)
	Dynamic Filters
	Reviewing Network Changes
	Notes

	Open (File)
	PF ID/Description (Edit)
	Plot Options (File)
	User Comments
	Page Options
	Diagram Options
	Plot Destination

	Print Plot (File)
	Reports (View)
	Run CFLOW (Process)
	Save (File)
	Solution Data Off (View)
	Solution Data On (View)
	Solve Case (Process)

	Customizing the GUI (XGUI)
	XGUI Resources
	Changing IPF Resources
	Changing Open File Defaults
	Changing Printer Defaults
	Changing Window Position and Size
	Changing Fonts
	Changing Colors
	Changing Default File Names


	CFLOW C API (libcflow)
	Overview
	History
	Audience

	Creating a Program
	Running a CFLOW Program
	From the command line
	From the GUI
	From ipfbat

	Debugging
	Functions Overview
	Simple Command Functions
	Record Oriented Functions
	Buffer Oriented Operations
	Utility Functions

	Notes
	Strings
	Arrays
	Function Types
	Main
	Includes
	Linking
	Buffers
	Languages

	Simple Report Example
	Standard Line Flow Summary Example
	increm Program
	libcflow API Reference

	Network Diagrams
	Overview
	Input Requirements, Output, and Operation
	Input Requirements
	Output
	Plot Program Operation

	Coordinate File
	File Indentification Record - [ID COORD
	Options Record - O
	PostScript Records
	>Define Records
	Comment Records
	Draw Records
	Bus Coordinate Data
	Branch Coordinate Data
	Area Coordinate Data
	Intertie Coordinate Data
	Annotation Record
	Trailer Record

	PostScript Procedures
	Coordinate Data Within the Postscript Procedures File
	Diagram Identification Data
	Legend
	Line Pattern Data
	Bus Overvoltage/Undervoltage Range Values
	Bus Symbols
	Area Symbols and Bubble Plots

	Diagram Components
	Supportive Diagram Components
	Primary Diagram Components: Bus/Branch Diagrams
	Primary Diagram Components: Interchange Diagram
	Primary Diagram Components: Difference Diagram


	Calculating Line Impedance
	Description of Conductor Data Fields
	Output Values
	Calculating the Impedance

	DC Line Modeling
	Network Reduction
	Method of Reduction
	Description of Reduction
	Program Control Options
	Admittance Cutoff
	Disposition of Injections
	Reduction Mode
	Ultimate Mode
	Summary

	REI Equivalent
	REI Clusters
	Coherency Clusters
	Using REI Equivalents
	Optimal Network Determination
	REDUCTION Command

	Retained Network Definition
	Reduction Cards
	Input listings

	Voltage Limits and Starting Voltages
	Notes

	Developer Notes
	Debugging
	bpf Flowchart
	tsp Flowchart
	Variables
	Command Subroutines
	WSCC Specifications
	General, Load Flow, & Stability
	Load Flow Program

	Additional Resources


	Index

